Suppr超能文献

基于锥面切平面约束加权最小二乘法的稳健到达时间差(TDOA)定位

Robust Time-Difference-of-Arrival (TDOA) Localization Using Weighted Least Squares with Cone Tangent Plane Constraint.

作者信息

Jin Bonan, Xu Xiaosu, Zhang Tao

机构信息

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

出版信息

Sensors (Basel). 2018 Mar 4;18(3):778. doi: 10.3390/s18030778.

Abstract

Finding the position of a radiative source based on time-difference-of-arrival (TDOA) measurements from spatially separated receivers has been widely applied in sonar, radar, mobile communications and sensor networks. For the nonlinear model in the process of positioning, Taylor series and other novel methods are proposed. The idea of cone constraint provides a new way of solving this problem. However, these approaches do not always perform well and are away from the Cramer-Rao-Lower-Bound (CRLB) in the situations when the source is set at the array edge, the noise in measurement is loud, or the initial position is biased. This paper presents a weighted-least-squares (WLS) algorithm with the cone tangent plane constraint for hyperbolic positioning. The method adds the range between the source and the reference sensor as a dimension. So, the space-range frame is established. Different from other cone theories, this paper sets the reference sensor as the apex and finds the optimal source estimation on the cone. WLS is used for the optimal result from the measurement plane equations, a vertical constraint and a cone constraint. The cone constraint equation is linearized by a tangent plane. This method iterates through loops and updates the tangent plane, which approximates the truth-value on the cone. The proposed algorithm was simulated and verified under various conditions of different source positions and noises. Besides, some state-of-the-art algorithms were compared in these simulations. The results show that this algorithm is accurate and robust under poor external environment.

摘要

基于来自空间分离接收器的到达时间差(TDOA)测量来确定辐射源的位置,已在声纳、雷达、移动通信和传感器网络中得到广泛应用。针对定位过程中的非线性模型,提出了泰勒级数等新方法。锥约束的思想为解决该问题提供了一种新途径。然而,在源设置在阵列边缘、测量噪声较大或初始位置有偏差的情况下,这些方法并不总是表现良好,且偏离了克拉美罗下界(CRLB)。本文提出一种具有锥切平面约束的加权最小二乘(WLS)算法用于双曲线定位。该方法将源与参考传感器之间的距离作为一个维度加入,从而建立了空间 - 距离框架。与其他锥理论不同,本文将参考传感器设为顶点,并在锥面上找到最优的源估计。利用WLS从测量平面方程、垂直约束和锥约束中得到最优结果。通过切平面将锥约束方程线性化。该方法通过循环迭代并更新切平面,以逼近锥面上的真值。在不同源位置和噪声的各种条件下对所提出的算法进行了仿真验证。此外,在这些仿真中还比较了一些最先进的算法。结果表明,该算法在恶劣的外部环境下准确且稳健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f70/5876713/aa7f170aa5c5/sensors-18-00778-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验