Suppr超能文献

基于混沌增强自适应混合蝴蝶粒子群优化算法的无源目标定位

Chaos-Enhanced Adaptive Hybrid Butterfly Particle Swarm Optimization Algorithm for Passive Target Localization.

机构信息

Faculty of Mechanical Engineering, University of Belgrade, 11000 Belgrade, Serbia.

School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia.

出版信息

Sensors (Basel). 2022 Jul 31;22(15):5739. doi: 10.3390/s22155739.

Abstract

This paper considers the problem of finding the position of a passive target using noisy time difference of arrival (TDOA) measurements, obtained from multiple transmitters and a single receiver. The maximum likelihood (ML) estimator's objective function is extremely nonlinear and non-convex, making it impossible to use traditional optimization techniques. In this regard, this paper proposes the chaos-enhanced adaptive hybrid butterfly particle swarm optimization algorithm, named CAHBPSO, as the hybridization of butterfly optimization (BOA) and particle swarm optimization (PSO) algorithms, to estimate passive target position. In the proposed algorithm, an adaptive strategy is employed to update the sensory fragrance of BOA algorithm, and chaos theory is incorporated into the inertia weight of PSO algorithm. Furthermore, an adaptive switch probability is employed to combine global and local search phases of BOA with the PSO algorithm. Additionally, the semidefinite programming is employed to convert the considered problem into a convex one. The statistical comparison on CEC2014 benchmark problems shows that the proposed algorithm provides a better performance compared to well-known algorithms. The CAHBPSO method surpasses the BOA, PSO and semidefinite programming (SDP) algorithms for a broad spectrum of noise, according to simulation findings, and achieves the Cramer-Rao lower bound (CRLB).

摘要

本文考虑了使用多个发射器和单个接收器获得的噪声到达时间差 (TDOA) 测量值来确定无源目标位置的问题。最大似然 (ML) 估计器的目标函数极其非线性和非凸,因此无法使用传统的优化技术。在这方面,本文提出了混沌增强自适应混合蝴蝶粒子群优化算法 (CAHBPSO),它是蝴蝶优化 (BOA) 和粒子群优化 (PSO) 算法的混合,用于估计无源目标位置。在提出的算法中,采用自适应策略来更新 BOA 算法的感觉香味,将混沌理论纳入 PSO 算法的惯性权重中。此外,采用自适应开关概率将 BOA 的全局和局部搜索阶段与 PSO 算法相结合。此外,半定规划用于将所考虑的问题转换为凸问题。CEC2014 基准问题的统计比较表明,与知名算法相比,所提出的算法具有更好的性能。根据模拟结果,CAHBPSO 方法在广泛的噪声范围内优于 BOA、PSO 和半定规划 (SDP) 算法,并达到了克拉美罗下限 (CRLB)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fbb/9370877/32ebe5610c3c/sensors-22-05739-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验