Suppr超能文献

一种自供电多孔 ZnS/PVDF-HFP 机械发光复合膜,可以将人体运动转化为肉眼可读的光。

A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light.

机构信息

Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, PR China.

Department of Materials, School of Technology, Yantai Nanshan University, Longkou, Shandong Province 265713, China.

出版信息

Nanoscale. 2018 Mar 28;10(12):5489-5495. doi: 10.1039/c8nr00379c. Epub 2018 Mar 7.

Abstract

This study reports on a self-powered mechanoluminescent flexible film that converts human movement into green, yellow, and white light that are visible to the naked eye. The film is simply a highly porous composite material that was prepared using a piezoelectric polymer and ZnS luminescent powders. The highly effective mechanoluminescence capabilities stem from both the film's porous structure and the strong interactions between poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and ZnS particles. The porous film's sensitivity helps the conversion of mechanical disturbances into electrical energies and induces the electroluminescence of ZnS particles. The particle-film interactions induced a high β-phase, which is the most effective piezoelectric phase, in the PVDF-HFP film. Similar to polymeric materials, the composite film is highly processable and can be written into arbitrary shapes or patterns using a pipette or stamping techniques. Finger rubbing or ultrasonication makes the mechanoluminescence patterns readable. This composite mechanoluminescent film provides high potential for future applications in electronic skins, smart electronics, and information encryption techniques.

摘要

本研究报告了一种自供电的力学发光柔性薄膜,它可以将人体运动转化为肉眼可见的绿光、黄光和白光。该薄膜仅仅是一种使用压电聚合物和 ZnS 发光粉末制备的高多孔复合材料。这种高效的力学发光性能源于薄膜的多孔结构以及聚偏氟乙烯-共-六氟丙烯(PVDF-HFP)和 ZnS 颗粒之间的强相互作用。多孔薄膜的敏感性有助于将机械干扰转化为电能,并诱导 ZnS 颗粒的电致发光。颗粒-薄膜相互作用诱导了 PVDF-HFP 薄膜中高β相的形成,β相是最有效的压电相。与聚合材料类似,该复合材料薄膜具有很好的可加工性,可以使用移液器或冲压技术将其写入任意形状或图案。手指摩擦或超声处理可以使力学发光图案可读。这种复合力学发光薄膜在电子皮肤、智能电子和信息加密技术等领域具有很高的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验