Center for Advanced Materials, Qatar University, P O Box 2713, Doha, Qatar.
Materials Science & Technology Program (MATS), College of Arts & Sciences, Qatar University, Doha, 2713, Qatar.
Sci Rep. 2018 Jan 15;8(1):754. doi: 10.1038/s41598-017-19082-3.
Herein, we investigate the morphology, structure and piezoelectric performances of neat polyvinylidene fluoride hexafluoropropylene (PVDF-HFP) and PVDF-HFP/Co-ZnO nanofibers, fabricated by electrospinning. An increase in the amount of crystalline β-phase of PVDF-HFP has been observed with the increase in Co-doped ZnO nanofiller concentration in the PVDF-HFP matrix. The dielectric constants of the neat PVDF-HFP and PVDF-HFP/2 wt.% Co-ZnO nanofibers are derived as 8 and 38 respectively. The flexible nanogenerator manipulated from the polymer nanocomposite (PVDF-HFP/Co-ZnO) exhibits an output voltage as high as 2.8 V compared with the neat PVDF-HFP sample (~120 mV). These results indicate that the investigated nanocomposite is appropriate for fabricating various flexible and wearable self-powered electrical devices and systems.
在此,我们研究了通过静电纺丝制备的纯聚偏二氟乙烯六氟丙烯(PVDF-HFP)和 PVDF-HFP/Co-ZnO 纳米纤维的形貌、结构和压电性能。随着 Co 掺杂 ZnO 纳米填料在 PVDF-HFP 基体中浓度的增加,PVDF-HFP 的结晶 β 相数量增加。纯 PVDF-HFP 和 PVDF-HFP/2wt.%Co-ZnO 纳米纤维的介电常数分别为 8 和 38。与纯 PVDF-HFP 样品(~120mV)相比,由聚合物纳米复合材料(PVDF-HFP/Co-ZnO)操纵的柔性纳米发电机的输出电压高达 2.8V。这些结果表明,所研究的纳米复合材料适合制造各种柔性和可穿戴的自供电电子设备和系统。