Gao Yanfeng, Magaud Pascale, Baldas Lucien, Wang Yanping
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
Institut Clément Ader, Université de Toulouse, CNRS, INSA, ISAE-SUPAERO, Mines-Albi, Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France.
Micromachines (Basel). 2021 Feb 14;12(2):198. doi: 10.3390/mi12020198.
The inertial migration of particles in microchannel flows has been deeply investigated in the last two decades. In spite of numerous reports on the inertial focusing patterns in a square channel, the particle inertial focusing and longitudinal ordering processes remain unclear at high Reynolds numbers (>200) in square microchannels smaller than 100 µm in width. Thus, in this work, in situ visualization of particles flowing in square micro-channels at Reynolds numbers ranging from 5 to 280 has been conducted and their migration behaviors have been analyzed. The obtained results confirm that new equilibrium positions appear above a critical depending on the particle to channel size ratio and the particle volume fraction. It is also shown that, for a given channel length, an optimal Reynolds number can be identified, for which the ratio of particles located on equilibrium positions is maximal. Moreover, the longitudinal ordering process, i.e., the formation of trains of particles on equilibrium positions and the characterization of their length, has also been analyzed for the different flow conditions investigated in this study.
在过去二十年中,微通道流中颗粒的惯性迁移已得到深入研究。尽管有大量关于方形通道中惯性聚焦模式的报道,但在宽度小于100 µm的方形微通道中,在高雷诺数(>200)下颗粒的惯性聚焦和纵向排列过程仍不清楚。因此,在这项工作中,对雷诺数范围为5至280的方形微通道中流动的颗粒进行了原位可视化,并分析了它们的迁移行为。所得结果证实,取决于颗粒与通道尺寸比和颗粒体积分数,在临界值以上会出现新的平衡位置。还表明,对于给定的通道长度,可以确定一个最佳雷诺数,在该雷诺数下位于平衡位置的颗粒比例最大。此外,还针对本研究中研究的不同流动条件分析了纵向排列过程,即在平衡位置形成颗粒链及其长度的表征。