Suppr超能文献

惯性微流控技术的原理及应用进展。

Progress of Inertial Microfluidics in Principle and Application.

机构信息

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.

Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.

出版信息

Sensors (Basel). 2018 Jun 1;18(6):1762. doi: 10.3390/s18061762.

Abstract

Inertial microfluidics has become a popular topic in microfluidics research for its good performance in particle manipulation and its advantages of simple structure, high throughput, and freedom from an external field. Compared with traditional microfluidic devices, the flow field in inertial microfluidics is between Stokes state and turbulence, whereas the flow is still regarded as laminar. However, many mechanical effects induced by the inertial effect are difficult to observe in traditional microfluidics, making particle motion analysis in inertial microfluidics more complicated. In recent years, the inertial migration effect in straight and curved channels has been explored theoretically and experimentally to realize on-chip manipulation with extensive applications from the ordinary manipulation of particles to biochemical analysis. In this review, the latest theoretical achievements and force analyses of inertial microfluidics and its development process are introduced, and its applications in circulating tumor cells, exosomes, DNA, and other biological particles are summarized. Finally, the future development of inertial microfluidics is discussed. Owing to its special advantages in particle manipulation, inertial microfluidics will play a more important role in integrated biochips and biomolecule analysis.

摘要

惯性微流控因其在粒子操控方面的优异性能,以及结构简单、高通量和无需外部场等优点,已成为微流控研究中的热门课题。与传统微流控器件相比,惯性微流控中的流场处于斯托克斯状态和湍流之间,而流动仍被视为层流。然而,惯性效应引起的许多力学效应在传统微流控中很难观察到,这使得惯性微流控中的粒子运动分析更加复杂。近年来,人们从理论和实验两方面探索了直通道和弯通道中的惯性迁移效应,以实现基于芯片的操控,其应用范围从普通的粒子操控扩展到生化分析。本文综述了惯性微流控的最新理论成果和力分析及其发展过程,并总结了其在循环肿瘤细胞、外泌体、DNA 等生物粒子中的应用。最后,讨论了惯性微流控的未来发展。由于其在粒子操控方面的特殊优势,惯性微流控将在集成式生物芯片和生物分子分析中发挥更重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b63/6021949/4980dfb055a9/sensors-18-01762-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验