Suppr超能文献

一种使用意大利行政数据解释医疗保健成本的病例组合分类系统。

A case-mix classification system for explaining healthcare costs using administrative data in Italy.

机构信息

Epidemiological System of the Veneto Region, Padua, Italy.

Local Health Unit no 6, Padua, Italy.

出版信息

Eur J Intern Med. 2018 Aug;54:13-16. doi: 10.1016/j.ejim.2018.02.035. Epub 2018 Mar 4.

Abstract

BACKGROUND

The Italian National Health Service (NHS) provides universal coverage to all citizens, granting primary and hospital care with a copayment system for outpatient and drug services. Financing of Local Health Trusts (LHTs) is based on a capitation system adjusted only for age, gender and area of residence. We applied a risk-adjustment system (Johns Hopkins Adjusted Clinical Groups System, ACG® System) in order to explain health care costs using routinely collected administrative data in the Veneto Region (North-eastern Italy).

METHODS

All residents in the Veneto Region were included in the study. The ACG system was applied to classify the regional population based on the following information sources for the year 2015: Hospital Discharges, Emergency Room visits, Chronic disease registry for copayment exemptions, ambulatory visits, medications, the Home care database, and drug prescriptions. Simple linear regressions were used to contrast an age-gender model to models incorporating more comprehensive risk measures aimed at predicting health care costs.

RESULTS

A simple age-gender model explained only 8% of the variance of 2015 total costs. Adding diagnoses-related variables provided a 23% increase, while pharmacy based variables provided an additional 17% increase in explained variance. The adjusted R-squared of the comprehensive model was 6 times that of the simple age-gender model.

CONCLUSIONS

ACG System provides substantial improvement in predicting health care costs when compared to simple age-gender adjustments. Aging itself is not the main determinant of the increase of health care costs, which is better explained by the accumulation of chronic conditions and the resulting multimorbidity.

摘要

背景

意大利国家卫生服务体系(NHS)为所有公民提供普遍覆盖,通过门诊和药物服务的共付制度提供初级和医院护理。地方卫生信托基金(LHT)的融资基于人头系统,仅根据年龄、性别和居住区域进行调整。我们应用了风险调整系统(约翰霍普金斯调整临床分组系统,ACG®系统),以便使用威尼托地区(意大利东北部)常规收集的行政数据来解释医疗保健费用。

方法

研究纳入了威尼托地区的所有居民。ACG 系统用于根据以下信息源对该地区人口进行分类:2015 年的医院出院记录、急诊室就诊记录、共付豁免的慢性病登记册、门诊就诊记录、药物、家庭护理数据库和药物处方。简单线性回归用于对比仅基于年龄和性别的模型与纳入更全面风险措施的模型,这些措施旨在预测医疗保健费用。

结果

简单的年龄性别模型仅解释了 2015 年总费用方差的 8%。添加与诊断相关的变量可使方差增加 23%,而基于药房的变量则使方差增加 17%。综合模型的调整 R 平方是简单年龄性别模型的 6 倍。

结论

与简单的年龄性别调整相比,ACG 系统在预测医疗保健费用方面有显著提高。老龄化本身并不是医疗保健费用增加的主要决定因素,慢性疾病的积累及其导致的多种合并症更好地解释了这一现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验