Office of Clinical Epidemiology, Analytics, and Knowledge (OCEAN), Tan Tock Seng Hospital, Singapore.
Population Health Office, Tan Tock Seng Hospital, Singapore.
BMJ Open. 2023 Mar 30;13(3):e062786. doi: 10.1136/bmjopen-2022-062786.
Population health management involves risk characterisation and patient segmentation. Almost all population segmentation tools require comprehensive health information spanning the full care continuum. We assessed the utility of applying the ACG System as a population risk segmentation tool using only hospital data.
Retrospective cohort study.
Tertiary hospital in central Singapore.
100 000 randomly selected adult patients from 1 January to 31 December 2017.
Hospital encounters, diagnoses codes and medications prescribed to the participants were used as input data to the ACG System.
Hospital costs, admission episodes and mortality of these patients in the subsequent year (2018) were used to assess the utility of ACG System outputs such as resource utilisation bands (RUBs) in stratifying patients and identifying high hospital care users.
Patients placed in higher RUBs had higher prospective (2018) healthcare costs, and were more likely to have healthcare costs in the top five percentile, to have three or more hospital admissions, and to die in the subsequent year. A combination of RUBs and ACG System generated rank probability of high healthcare costs, age and gender that had good discriminatory ability for all three outcomes, with area under the receiver-operator characteristic curve (AUC) values of 0.827, 0.889 and 0.876, respectively. Application of machine learning methods improved AUCs marginally by about 0.02 in predicting the top five percentile of healthcare costs and death in the subsequent year.
A population stratification and risk prediction tool can be used to appropriately segment populations in a hospital patient population even with incomplete clinical data.
人群健康管理涉及风险特征描述和患者细分。几乎所有的人群细分工具都需要全面的健康信息,涵盖整个医疗保健连续体。我们评估了仅使用医院数据将 ACG 系统应用于人群风险细分工具的效用。
回顾性队列研究。
新加坡中部的一家三级医院。
2017 年 1 月 1 日至 12 月 31 日随机抽取的 10 万名成年患者。
将患者的医院就诊、诊断代码和开具的药物作为输入数据应用于 ACG 系统。
这些患者在随后的一年(2018 年)的医院费用、住院次数和死亡率用于评估 ACG 系统输出(如资源利用带[RUB])在分层患者和识别高医院护理使用者方面的效用。
处于较高 RUB 级别的患者具有较高的预期(2018 年)医疗保健费用,并且更有可能在医疗保健费用中处于前 5%,有三次或更多的住院治疗,并且在随后的一年中死亡。RUB 与 ACG 系统联合生成的高医疗保健费用、年龄和性别排名概率具有良好的区分能力,对所有三个结果的曲线下面积(AUC)值分别为 0.827、0.889 和 0.876。应用机器学习方法略微提高了预测前 5%的医疗保健费用和随后一年死亡的 AUC 值,约为 0.02。
即使临床数据不完整,也可以使用人群分层和风险预测工具来适当地对医院患者人群进行细分。