Shahsavari Rouzbeh, Zhao Shuo
Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA.
Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
Small. 2018 Apr;14(15):e1702863. doi: 10.1002/smll.201702863. Epub 2018 Mar 8.
Hydrogen is an ideal synthetic fuel because it is lightweight, abundant and its oxidation product (water) is environmentally benign. However, its utilization is impeded by the lack of an efficient storage device. A new building block approach is proposed for an exhaustive search of optimal hydrogen uptakes in a series of low density boron nitride (BN) nanoarchitectures via extensive 3868 ab initio-based multiscale simulations. By probing various geometries, temperatures, pressures, and doping ratios, these results demonstrate a maximum uptake of 8.65 wt% at 300 K, the highest hydrogen uptake on sorbents at room temperature without doping. Li doping of the nanoarchitectures offers a set of optimal combinations of gravimetric and volumetric uptakes, surpassing the US Department of Energy targets. These findings suggest that the merger of energetic affinity and optimal geometry in BN building blocks overcomes the intrinsic limitations of sorbent materials, putting hybrid BN nanoarchitectures on equal footing with hydrides while demonstrating a superior capacity-kinetics-thermodynamics relationship.
氢是一种理想的合成燃料,因为它重量轻、储量丰富,其氧化产物(水)对环境无害。然而,由于缺乏高效的存储设备,其应用受到阻碍。本文提出了一种新的构建模块方法,通过基于从头算的3868次广泛多尺度模拟,对一系列低密度氮化硼(BN)纳米结构中的最佳氢吸收进行详尽搜索。通过探究各种几何结构、温度、压力和掺杂比例,这些结果表明在300K时最大氢吸收量为8.65 wt%,这是在室温下未掺杂的吸附剂上最高的氢吸收量。纳米结构的锂掺杂提供了一组重量和体积吸收的最佳组合,超过了美国能源部的目标。这些发现表明,BN构建模块中能量亲和力和最佳几何结构的结合克服了吸附剂材料的固有局限性,使混合BN纳米结构与氢化物处于同等地位,同时展示了卓越的容量-动力学-热力学关系。