Suppr超能文献

磁共振成像在白质信号异常诊断中的应用

Magnetic resonance imaging in the diagnosis of white matter signal abnormalities.

作者信息

Datar Ravi, Prasad Asuri Narayan, Tay Keng Yeow, Rupar Charles Anthony, Ohorodnyk Pavlo, Miller Michael, Prasad Chitra

机构信息

1 Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.

2 Department of Medical Genetics, London Health Sciences Centre, London, ON, Canada.

出版信息

Neuroradiol J. 2018 Aug;31(4):362-371. doi: 10.1177/1971400918764016. Epub 2018 Mar 8.

Abstract

Background White matter abnormalities (WMAs) pose a diagnostic challenge when trying to establish etiologic diagnoses. During childhood and adult years, genetic disorders, metabolic disorders and acquired conditions are included in differential diagnoses. To assist clinicians and radiologists, a structured algorithm using cranial magnetic resonance imaging (MRI) has been recommended to aid in establishing working diagnoses that facilitate appropriate biochemical and genetic investigations. This retrospective pilot study investigated the validity and diagnostic utility of this algorithm when applied to white matter signal abnormalities (WMSAs) reported on imaging studies of patients seen in our clinics. Methods The MRI algorithm was applied to 31 patients selected from patients attending the neurometabolic/neurogenetic/metabolic/neurology clinics at a tertiary care hospital. These patients varied in age from 5 months to 79 years old, and were reported to have WMSAs on cranial MRI scans. Twenty-one patients had confirmed WMA diagnoses and 10 patients had non-specific WMA diagnoses (etiology unknown). Two radiologists, blinded to confirmed diagnoses, used clinical abstracts and the WMSAs present on patient MRI scans to classify possible WMA diagnoses utilizing the algorithm. Results The MRI algorithm displayed a sensitivity of 100%, a specificity of 30.0% and a positive predicted value of 74.1%. Cohen's kappa statistic for inter-radiologist agreement was 0.733, suggesting "good" agreement between radiologists. Conclusions Although a high diagnostic utility was not observed, results suggest that this MRI algorithm has promise as a clinical tool for clinicians and radiologists. We discuss the benefits and limitations of this approach.

摘要

背景 白质异常(WMA)在试图确立病因诊断时构成了诊断挑战。在儿童期和成年期,鉴别诊断包括遗传疾病、代谢疾病和后天性疾病。为帮助临床医生和放射科医生,已推荐使用一种基于头颅磁共振成像(MRI)的结构化算法,以协助确立有助于进行适当生化和基因检查的初步诊断。这项回顾性试点研究调查了该算法应用于我们诊所患者影像研究中报告的白质信号异常(WMSA)时的有效性和诊断效用。方法 将MRI算法应用于从一家三级医院的神经代谢/神经遗传/代谢/神经科诊所就诊的患者中挑选出的31例患者。这些患者年龄从5个月至79岁不等,头颅MRI扫描报告显示有WMSA。21例患者有确诊的WMA诊断,10例患者有非特异性WMA诊断(病因不明)。两名对确诊诊断不知情的放射科医生利用临床摘要和患者MRI扫描上存在的WMSA,使用该算法对可能的WMA诊断进行分类。结果 MRI算法显示敏感性为100%,特异性为30.0%,阳性预测值为74.1%。放射科医生之间一致性的Cohen's kappa统计量为0.733,表明放射科医生之间有“良好”的一致性。结论 尽管未观察到高诊断效用,但结果表明该MRI算法有望成为临床医生和放射科医生的临床工具。我们讨论了这种方法的益处和局限性。

相似文献

1
Magnetic resonance imaging in the diagnosis of white matter signal abnormalities.
Neuroradiol J. 2018 Aug;31(4):362-371. doi: 10.1177/1971400918764016. Epub 2018 Mar 8.
3
Artificial Intelligence System Approaching Neuroradiologist-level Differential Diagnosis Accuracy at Brain MRI.
Radiology. 2020 Jun;295(3):626-637. doi: 10.1148/radiol.2020190283. Epub 2020 Apr 7.
4
Seizure-induced brain lesions: a wide spectrum of variably reversible MRI abnormalities.
Eur J Radiol. 2013 Nov;82(11):1964-72. doi: 10.1016/j.ejrad.2013.05.020. Epub 2013 Jun 17.
5
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
PLoS Med. 2018 Nov 27;15(11):e1002699. doi: 10.1371/journal.pmed.1002699. eCollection 2018 Nov.
7
[Dispensing with sedation in pediatric MR imaging of the brain: what is feasible?].
Rofo. 2012 Nov;184(11):1034-42. doi: 10.1055/s-0032-1313065. Epub 2012 Aug 7.
9
Characterization of MRI White Matter Signal Abnormalities in the Pediatric Population.
Children (Basel). 2023 Jan 24;10(2):206. doi: 10.3390/children10020206.
10
Morphometric analysis on T1-weighted MRI complements visual MRI review in focal cortical dysplasia.
Epilepsy Res. 2018 Feb;140:184-191. doi: 10.1016/j.eplepsyres.2018.01.018. Epub 2018 Jan 31.

引用本文的文献

1
Magnetic resonance imaging pattern recognition of metabolic and neurodegenerative encephalopathies in dogs and cats.
Front Vet Sci. 2024 Jul 30;11:1390971. doi: 10.3389/fvets.2024.1390971. eCollection 2024.
2
Inherited paediatric neurometabolic disorders, can brain magnetic resonance imaging predict?
Neurosciences (Riyadh). 2020 Oct;25(5):392-398. doi: 10.17712/nsj.2020.5.20200072.

本文引用的文献

1
Costs of the diagnostic odyssey in children with inherited leukodystrophies.
Neurology. 2015 Sep 29;85(13):1167-70. doi: 10.1212/WNL.0000000000001974. Epub 2015 Aug 28.
2
A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies.
Mol Genet Metab. 2015 Apr;114(4):501-515. doi: 10.1016/j.ymgme.2014.12.434. Epub 2014 Dec 29.
3
Case definition and classification of leukodystrophies and leukoencephalopathies.
Mol Genet Metab. 2015 Apr;114(4):494-500. doi: 10.1016/j.ymgme.2015.01.006. Epub 2015 Jan 29.
4
Consensus statement on preventive and symptomatic care of leukodystrophy patients.
Mol Genet Metab. 2015 Apr;114(4):516-26. doi: 10.1016/j.ymgme.2014.12.433. Epub 2014 Dec 27.
5
Relative incidence of inherited white matter disorders in childhood to acquired pediatric demyelinating disorders.
Semin Pediatr Neurol. 2012 Dec;19(4):219-23. doi: 10.1016/j.spen.2012.10.001.
6
Interrater reliability: the kappa statistic.
Biochem Med (Zagreb). 2012;22(3):276-82.
7
The burden of inherited leukodystrophies in children.
Neurology. 2010 Aug 24;75(8):718-25. doi: 10.1212/WNL.0b013e3181eee46b. Epub 2010 Jul 21.
8
Invited article: an MRI-based approach to the diagnosis of white matter disorders.
Neurology. 2009 Feb 24;72(8):750-9. doi: 10.1212/01.wnl.0000343049.00540.c8.
9
Canavan disease: a white matter disorder.
Ment Retard Dev Disabil Res Rev. 2006;12(2):157-65. doi: 10.1002/mrdd.20108.
10
Methylmalonic and propionic acidaemias: management and outcome.
J Inherit Metab Dis. 2005;28(3):415-23. doi: 10.1007/s10545-005-7056-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验