Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States.
J Phys Chem B. 2018 May 31;122(21):5610-5622. doi: 10.1021/acs.jpcb.7b11871. Epub 2018 Mar 23.
The Bayesian Inference of Conformational Populations (BICePs) algorithm reconciles theoretical predictions of conformational state populations with sparse and/or noisy experimental measurements. Among its key advantages is its ability to perform objective model selection through a quantity we call the BICePs score, which reflects the integrated posterior evidence in favor of a given model, computed through free energy estimation methods. Here, we explore how the BICePs score can be used for force field validation and parametrization. Using a 2D lattice protein as a toy model, we demonstrate that BICePs is able to select the correct value of an interaction energy parameter given ensemble-averaged experimental distance measurements. We show that if conformational states are sufficiently fine-grained, the results are robust to experimental noise and measurement sparsity. Using these insights, we apply BICePs to perform force field evaluations for all-atom simulations of designed β-hairpin peptides against experimental NMR chemical shift measurements. These tests suggest that BICePs scores can be used for model selection in the context of all-atom simulations. We expect this approach to be particularly useful for the computational foldamer design as a tool for improving general-purpose force fields given sparse experimental measurements.
贝叶斯构象种群推断(BICePs)算法将构象状态种群的理论预测与稀疏和/或嘈杂的实验测量结果协调一致。它的主要优势之一是能够通过我们称之为 BICePs 得分的数量进行客观的模型选择,该得分反映了通过自由能估计方法计算得出的给定模型的综合后验证据。在这里,我们探讨了 BICePs 得分如何用于力场验证和参数化。我们使用二维晶格蛋白作为玩具模型,证明了 BICePs 能够在给定的均方位移实验距离测量结果下选择正确的相互作用能参数值。我们表明,如果构象状态足够精细,那么结果对实验噪声和测量稀疏性具有鲁棒性。利用这些见解,我们应用 BICePs 对设计的β发夹肽的全原子模拟进行力场评估,以对抗实验 NMR 化学位移测量。这些测试表明,BICePs 得分可用于全原子模拟背景下的模型选择。我们预计,这种方法对于计算折叠体设计特别有用,因为它是一种在给定稀疏实验测量结果的情况下改进通用力场的工具。