Suppr超能文献

使用 BICePs 进行模型选择:一种用于力场验证和参数化的贝叶斯方法。

Model Selection Using BICePs: A Bayesian Approach for Force Field Validation and Parameterization.

机构信息

Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States.

出版信息

J Phys Chem B. 2018 May 31;122(21):5610-5622. doi: 10.1021/acs.jpcb.7b11871. Epub 2018 Mar 23.

Abstract

The Bayesian Inference of Conformational Populations (BICePs) algorithm reconciles theoretical predictions of conformational state populations with sparse and/or noisy experimental measurements. Among its key advantages is its ability to perform objective model selection through a quantity we call the BICePs score, which reflects the integrated posterior evidence in favor of a given model, computed through free energy estimation methods. Here, we explore how the BICePs score can be used for force field validation and parametrization. Using a 2D lattice protein as a toy model, we demonstrate that BICePs is able to select the correct value of an interaction energy parameter given ensemble-averaged experimental distance measurements. We show that if conformational states are sufficiently fine-grained, the results are robust to experimental noise and measurement sparsity. Using these insights, we apply BICePs to perform force field evaluations for all-atom simulations of designed β-hairpin peptides against experimental NMR chemical shift measurements. These tests suggest that BICePs scores can be used for model selection in the context of all-atom simulations. We expect this approach to be particularly useful for the computational foldamer design as a tool for improving general-purpose force fields given sparse experimental measurements.

摘要

贝叶斯构象种群推断(BICePs)算法将构象状态种群的理论预测与稀疏和/或嘈杂的实验测量结果协调一致。它的主要优势之一是能够通过我们称之为 BICePs 得分的数量进行客观的模型选择,该得分反映了通过自由能估计方法计算得出的给定模型的综合后验证据。在这里,我们探讨了 BICePs 得分如何用于力场验证和参数化。我们使用二维晶格蛋白作为玩具模型,证明了 BICePs 能够在给定的均方位移实验距离测量结果下选择正确的相互作用能参数值。我们表明,如果构象状态足够精细,那么结果对实验噪声和测量稀疏性具有鲁棒性。利用这些见解,我们应用 BICePs 对设计的β发夹肽的全原子模拟进行力场评估,以对抗实验 NMR 化学位移测量。这些测试表明,BICePs 得分可用于全原子模拟背景下的模型选择。我们预计,这种方法对于计算折叠体设计特别有用,因为它是一种在给定稀疏实验测量结果的情况下改进通用力场的工具。

相似文献

4
Reconciling Simulations and Experiments With BICePs: A Review.使用BICePs协调模拟与实验:综述
Front Mol Biosci. 2021 May 11;8:661520. doi: 10.3389/fmolb.2021.661520. eCollection 2021.

引用本文的文献

4
Minimal Peptoid Dynamics Inform Self-Assembly Propensity.最小类肽动力学影响自组装倾向。
J Phys Chem B. 2023 Dec 14;127(49):10601-10614. doi: 10.1021/acs.jpcb.3c03725. Epub 2023 Dec 1.
7
Reconciling Simulations and Experiments With BICePs: A Review.使用BICePs协调模拟与实验:综述
Front Mol Biosci. 2021 May 11;8:661520. doi: 10.3389/fmolb.2021.661520. eCollection 2021.
10
BEES: Bayesian Ensemble Estimation from SAS.BEES:来自 SAS 的贝叶斯集成估计。
Biophys J. 2019 Aug 6;117(3):399-407. doi: 10.1016/j.bpj.2019.06.024. Epub 2019 Jul 18.

本文引用的文献

4
Principles of protein structural ensemble determination.蛋白质结构系综测定原理。
Curr Opin Struct Biol. 2017 Feb;42:106-116. doi: 10.1016/j.sbi.2016.12.004. Epub 2017 Jan 5.
5
Computational methods to design cyclic peptides.设计环肽的计算方法。
Curr Opin Chem Biol. 2016 Oct;34:95-102. doi: 10.1016/j.cbpa.2016.08.004. Epub 2016 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验