Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States.
J Chem Inf Model. 2023 Apr 24;63(8):2370-2381. doi: 10.1021/acs.jcim.2c01296. Epub 2023 Apr 7.
Bayesian Inference of Conformational Populations (BICePs) version 2.0 (v2.0) is a free, open-source Python package that reweights theoretical predictions of conformational state populations using sparse and/or noisy experimental measurements. In this article, we describe the implementation and usage of the latest version of BICePs (v2.0), a powerful, user-friendly and extensible package which makes several improvements upon the previous version. The algorithm now supports many experimental NMR observables (NOE distances, chemical shifts, -coupling constants, and hydrogen-deuterium exchange protection factors), and enables convenient data preparation and processing. BICePs v2.0 can perform automatic analysis of the sampled posterior, including visualization, and evaluation of statistical significance and sampling convergence. We provide specific coding examples for these topics, and present a detailed example illustrating how to use BICePs v2.0 to reweight a theoretical ensemble using experimental measurements.
贝叶斯构象种群推断(BICePs)版本 2.0(v2.0)是一个免费的、开源的 Python 包,用于使用稀疏和/或嘈杂的实验测量重新加权构象状态种群的理论预测。在本文中,我们将介绍 BICePs(v2.0)的最新版本的实现和使用,这是一个功能强大、用户友好且可扩展的包,在以前的版本基础上进行了多项改进。该算法现在支持许多实验 NMR 观测值(NOE 距离、化学位移、-耦合常数和氢-氘交换保护因子),并能够方便地进行数据准备和处理。BICePs v2.0 可以对采样后的后验进行自动分析,包括可视化以及评估统计显著性和采样收敛性。我们为这些主题提供了具体的编码示例,并提供了一个详细的示例,说明如何使用 BICePs v2.0 使用实验测量重新加权理论集合。