Suppr超能文献

BICePs v2.0:使用基于贝叶斯推断的构象族的集合重加权软件。

BICePs v2.0: Software for Ensemble Reweighting Using Bayesian Inference of Conformational Populations.

机构信息

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.

Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States.

出版信息

J Chem Inf Model. 2023 Apr 24;63(8):2370-2381. doi: 10.1021/acs.jcim.2c01296. Epub 2023 Apr 7.

Abstract

Bayesian Inference of Conformational Populations (BICePs) version 2.0 (v2.0) is a free, open-source Python package that reweights theoretical predictions of conformational state populations using sparse and/or noisy experimental measurements. In this article, we describe the implementation and usage of the latest version of BICePs (v2.0), a powerful, user-friendly and extensible package which makes several improvements upon the previous version. The algorithm now supports many experimental NMR observables (NOE distances, chemical shifts, -coupling constants, and hydrogen-deuterium exchange protection factors), and enables convenient data preparation and processing. BICePs v2.0 can perform automatic analysis of the sampled posterior, including visualization, and evaluation of statistical significance and sampling convergence. We provide specific coding examples for these topics, and present a detailed example illustrating how to use BICePs v2.0 to reweight a theoretical ensemble using experimental measurements.

摘要

贝叶斯构象种群推断(BICePs)版本 2.0(v2.0)是一个免费的、开源的 Python 包,用于使用稀疏和/或嘈杂的实验测量重新加权构象状态种群的理论预测。在本文中,我们将介绍 BICePs(v2.0)的最新版本的实现和使用,这是一个功能强大、用户友好且可扩展的包,在以前的版本基础上进行了多项改进。该算法现在支持许多实验 NMR 观测值(NOE 距离、化学位移、-耦合常数和氢-氘交换保护因子),并能够方便地进行数据准备和处理。BICePs v2.0 可以对采样后的后验进行自动分析,包括可视化以及评估统计显著性和采样收敛性。我们为这些主题提供了具体的编码示例,并提供了一个详细的示例,说明如何使用 BICePs v2.0 使用实验测量重新加权理论集合。

相似文献

1
BICePs v2.0: Software for Ensemble Reweighting Using Bayesian Inference of Conformational Populations.
J Chem Inf Model. 2023 Apr 24;63(8):2370-2381. doi: 10.1021/acs.jcim.2c01296. Epub 2023 Apr 7.
2
Model Selection Using BICePs: A Bayesian Approach for Force Field Validation and Parameterization.
J Phys Chem B. 2018 May 31;122(21):5610-5622. doi: 10.1021/acs.jpcb.7b11871. Epub 2018 Mar 23.
4
Bayesian inference of conformational state populations from computational models and sparse experimental observables.
J Comput Chem. 2014 Nov 15;35(30):2215-24. doi: 10.1002/jcc.23738. Epub 2014 Sep 24.
5
Bayesian ensemble refinement by replica simulations and reweighting.
J Chem Phys. 2015 Dec 28;143(24):243150. doi: 10.1063/1.4937786.
7
Reconciling Simulations and Experiments With BICePs: A Review.
Front Mol Biosci. 2021 May 11;8:661520. doi: 10.3389/fmolb.2021.661520. eCollection 2021.
8
An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference.
Syst Biol. 2022 Oct 12;71(6):1549-1560. doi: 10.1093/sysbio/syac015.
10
Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach.
Methods Mol Biol. 2020;2112:219-240. doi: 10.1007/978-1-0716-0270-6_15.

引用本文的文献

1
Combining simulations and experiments - a perspective on maximum entropy methods.
Phys Chem Chem Phys. 2025 Jul 17;27(28):14704-14717. doi: 10.1039/d5cp01263e.
2
MELD in Action: Harnessing Data to Accelerate Molecular Dynamics.
J Chem Inf Model. 2025 Feb 24;65(4):1685-1693. doi: 10.1021/acs.jcim.4c02108. Epub 2025 Feb 2.
3
Effects of All-Atom and Coarse-Grained Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of a Tau K18 Monomer.
J Chem Inf Model. 2024 Dec 9;64(23):8880-8891. doi: 10.1021/acs.jcim.4c01448. Epub 2024 Nov 23.

本文引用的文献

1
Metal Cation-Binding Mechanisms of Q-Proline Peptoid Macrocycles in Solution.
J Chem Inf Model. 2021 Jun 28;61(6):2818-2828. doi: 10.1021/acs.jcim.1c00447. Epub 2021 Jun 14.
2
Reconciling Simulations and Experiments With BICePs: A Review.
Front Mol Biosci. 2021 May 11;8:661520. doi: 10.3389/fmolb.2021.661520. eCollection 2021.
3
Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach.
Methods Mol Biol. 2020;2112:219-240. doi: 10.1007/978-1-0716-0270-6_15.
5
Molecular simulations minimally restrained by experimental data.
J Chem Phys. 2019 Apr 21;150(15):154121. doi: 10.1063/1.5089924.
6
Efficient Ensemble Refinement by Reweighting.
J Chem Theory Comput. 2019 May 14;15(5):3390-3401. doi: 10.1021/acs.jctc.8b01231. Epub 2019 Apr 17.
7
Bayesian inference of protein conformational ensembles from limited structural data.
PLoS Comput Biol. 2018 Dec 17;14(12):e1006641. doi: 10.1371/journal.pcbi.1006641. eCollection 2018 Dec.
8
Best Practices for Quantification of Uncertainty and Sampling Quality in Molecular Simulations [Article v1.0].
Living J Comput Mol Sci. 2018;1(1). doi: 10.33011/livecoms.1.1.5067. Epub 2018 Oct 27.
10
Learning Effective Molecular Models from Experimental Observables.
J Chem Theory Comput. 2018 Jul 10;14(7):3849-3858. doi: 10.1021/acs.jctc.8b00187. Epub 2018 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验