Suppr超能文献

阳离子聚合物用于非病毒基因递送至人 T 细胞。

Cationic polymers for non-viral gene delivery to human T cells.

机构信息

Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.

Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.

出版信息

J Control Release. 2018 Jul 28;282:140-147. doi: 10.1016/j.jconrel.2018.02.043. Epub 2018 Mar 5.

Abstract

The clinical success of chimeric antigen receptor (CAR) T cell immunotherapy in treating multiple blood cancers has created a need for efficient methods of ex vivo gene delivery to primary human T cells for cell engineering. Here, we synthesize and evaluate a panel of cationic polymers for gene delivery to both cultured and primary human T cells. We show that a subset of comb- and sunflower-shaped pHEMA-g-pDMAEMA polymers can mediate transfection with efficiencies up to 50% in the Jurkat human T cell line with minimal concomitant toxicity (>90% viability). We then optimize primary human T cell transfection conditions including activation time, cell density, DNA dose, culture media, and cytokine treatment. We demonstrate transfection of both CD4 and CD8 primary human T cells with messenger RNA and plasmid DNA at efficiencies up to 25 and 18%, respectively, with similarly high viability.

摘要

嵌合抗原受体 (CAR) T 细胞免疫疗法在治疗多种血液癌症方面的临床成功,催生了将基因有效地递送至原代人 T 细胞以进行细胞工程改造的需求。在这里,我们合成并评估了一系列阳离子聚合物,以用于向培养的和原代人 T 细胞进行基因传递。我们发现,一组梳状和向日葵状的 pHEMA-g-pDMAEMA 聚合物可以介导转染,在 Jurkat 人 T 细胞系中的效率高达 50%,同时伴随的毒性最小(>90%的活力)。然后,我们优化了原代人 T 细胞的转染条件,包括激活时间、细胞密度、DNA 剂量、培养基和细胞因子处理。我们证明了信使 RNA 和质粒 DNA 可以分别有效地转染 CD4 和 CD8 原代人 T 细胞,效率高达 25%和 18%,同时具有相似的高活力。

相似文献

1
Cationic polymers for non-viral gene delivery to human T cells.
J Control Release. 2018 Jul 28;282:140-147. doi: 10.1016/j.jconrel.2018.02.043. Epub 2018 Mar 5.
2
Deposition gene transfection using bioconjugates of DNA and thermoresponsive cationic homopolymer.
Bioconjug Chem. 2012 Apr 18;23(4):751-7. doi: 10.1021/bc2005768. Epub 2012 Apr 3.
3
Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery.
Bioconjug Chem. 2007 Nov-Dec;18(6):2077-84. doi: 10.1021/bc0701186. Epub 2007 Oct 10.
5
ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging.
Biomaterials. 2010 Apr;31(11):3087-94. doi: 10.1016/j.biomaterials.2010.01.007. Epub 2010 Jan 21.
6
Stable gene transfection mediated by polysulfobetaine/PDMAEMA diblock copolymer in salted medium.
J Biomater Sci Polym Ed. 2013;24(3):330-43. doi: 10.1080/09205063.2012.690279. Epub 2012 Aug 13.
8
Reduction-responsive cationic biodegradable micelles based on PDMAEMA-SS-PCL-SS-PDMAEMA triblock copolymers for gene delivery.
J Control Release. 2011 Nov 30;152 Suppl 1:e188-90. doi: 10.1016/j.jconrel.2011.08.081.
9
Nonviral DNA Delivery System with Supramolecular PEGylation Formed by Host-Guest Pseudo-Block Copolymers.
ACS Appl Bio Mater. 2021 Jun 21;4(6):5057-5070. doi: 10.1021/acsabm.1c00306. Epub 2021 Jun 1.
10
Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.
ACS Appl Mater Interfaces. 2015 Apr 15;7(14):7542-51. doi: 10.1021/am508847j. Epub 2015 Apr 2.

引用本文的文献

1
In vivo CAR-T cell therapy: New breakthroughs for cell-based tumor immunotherapy.
Hum Vaccin Immunother. 2025 Dec;21(1):2558403. doi: 10.1080/21645515.2025.2558403. Epub 2025 Sep 11.
2
Nanotechnology for CAR T cells and tumour-infiltrating lymphocyte therapies.
Nat Nanotechnol. 2025 Sep 10. doi: 10.1038/s41565-025-02008-w.
3
Lipid nanoparticles: a promising tool for nucleic acid delivery in cancer immunotherapy.
Med Oncol. 2025 Aug 6;42(9):409. doi: 10.1007/s12032-025-02939-3.
5
Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems.
J Nanobiotechnology. 2025 May 20;23(1):362. doi: 10.1186/s12951-025-03433-8.
7
Strategies for Altering Delivery Technologies to Optimize CAR Therapy.
Int J Mol Sci. 2025 Mar 30;26(7):3206. doi: 10.3390/ijms26073206.
8
Biomaterials for in situ cell therapy.
BMEmat. 2023 Sep;1(3). doi: 10.1002/bmm2.12039. Epub 2023 Jul 19.
9
Synthetic circRNA therapeutics: innovations, strategies, and future horizons.
MedComm (2020). 2024 Nov 9;5(11):e720. doi: 10.1002/mco2.720. eCollection 2024 Nov.
10
Polypiperazine-Based Micelles of Mixed Composition for Gene Delivery.
Polymers (Basel). 2024 Nov 4;16(21):3100. doi: 10.3390/polym16213100.

本文引用的文献

2
Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers.
Nat Commun. 2017 Aug 30;8(1):389. doi: 10.1038/s41467-017-00505-8.
3
In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers.
Nat Nanotechnol. 2017 Aug;12(8):813-820. doi: 10.1038/nnano.2017.57. Epub 2017 Apr 17.
4
Development of CAR T cells designed to improve antitumor efficacy and safety.
Pharmacol Ther. 2017 Oct;178:83-91. doi: 10.1016/j.pharmthera.2017.03.012. Epub 2017 Mar 22.
5
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection.
Nature. 2017 Mar 2;543(7643):113-117. doi: 10.1038/nature21405. Epub 2017 Feb 22.
8
The growing world of CAR T cell trials: a systematic review.
Cancer Immunol Immunother. 2016 Dec;65(12):1433-1450. doi: 10.1007/s00262-016-1895-5. Epub 2016 Sep 9.
9
Virus-Inspired Polymer for Efficient In Vitro and In Vivo Gene Delivery.
Angew Chem Int Ed Engl. 2016 Sep 19;55(39):12013-7. doi: 10.1002/anie.201605958. Epub 2016 Aug 19.
10
Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors.
Leukemia. 2017 Jan;31(1):186-194. doi: 10.1038/leu.2016.180. Epub 2016 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验