Suppr超能文献

应用统计和计算方法预测三叉神经痛立体定向放射外科的脑干剂量。

Application of statistical and computational methodology to predict brainstem dosimetry for trigeminal neuralgia stereotactic radiosurgery.

机构信息

School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.

Department of Radiation Medicine, Medstar Georgetown University Hospital, Washington, D.C, USA.

出版信息

Med Phys. 2018 May;45(5):1822-1831. doi: 10.1002/mp.12852. Epub 2018 Mar 25.

Abstract

OBJECTIVES

To apply advanced statistical and computational methodology in evaluating the impact of anatomical and technical variables on normal tissue dosimetry of trigeminal neuralgia (TN) stereotactic radiosurgery (SRS).

METHODS

Forty patients treated with LINAC-based TN SRS with 90 Gy maximum dose were randomly selected for the study. Parameters extracted from the treatment plans for the study included three dosimetric output variables: the maximum dose to the brainstem (BSmax), the volume of brainstem that received at least 10 Gy (V10BS), and the volume of normal brain that received at least 12 Gy (V12). We analyzed five anatomical variables: the incidence angle of the nerve with the brainstem surface (A), the nerve length (L), the nerve width as measured both axially (WA) and sagittally (WS), the distance measured along the nerve between the isocenter and the brainstem surface (D), and one technical variable: the utilized cone size (CS). Univariate correlation was calculated for each pair among all parameters. Multivariate regression models were fitted for the output parameters using the optimal input parameters selected by the Gaussian graphic model LASSO. Repeated twofold cross-validations were used to evaluate the models.

RESULTS

Median BSmax, V10BS, and V12 for the 40 patients were 35.7 Gy, 0.14 cc, and 1.28 cc, respectively. Median A, L, WA, WS, D, and CS were 43.7°, 8.8 mm, 2.8 mm, 2.7 mm, 4.8 mm, and 6 mm, respectively. Of the three output variables, BSmax most strongly correlated with the input variables. Specifically, it had strong, negative correlations with the input anatomical variables and a positive correlation with CS. The correlation between D and BSmax at -0.51 was the strongest correlation between single input and output parameters, followed by that between CS and V10BS at 0.45, and that between A and BSmax at -0.44. V12 was most correlated with cone size alone, rather than anatomy. LASSO identified an optimal 3-feature combination of A, D, and CS for BSmax and V10BS prediction. Using cross-validation, the multivariate regression models with the three selected features yielded stronger correlations than the correlation between the BSmax and V10BS themselves.

CONCLUSIONS

For the first time, an advanced statistical and computational methodology was applied to study the impact of anatomical and technical variables on TN SRS. The variables were found to impact brainstem doses, and reasonably strong correlation models were established using an optimized 3-feature combination including the nerve incidence angle, cone size, and isocenter-brainstem distance.

摘要

目的

应用先进的统计和计算方法评估三叉神经痛(TN)立体定向放射外科(SRS)中解剖学和技术变量对正常组织剂量学的影响。

方法

随机选择 40 例接受 LINAC 基于 TN SRS 治疗的患者,最大剂量为 90 Gy。研究中从治疗计划中提取了三个剂量学输出变量:脑干最大剂量(BSmax)、脑干至少接受 10 Gy 的体积(V10BS)和至少接受 12 Gy 的正常脑体积(V12)。我们分析了五个解剖学变量:神经与脑干表面的入射角(A)、神经长度(L)、轴向(WA)和矢状面(WS)测量的神经宽度、沿神经从等中心点到脑干表面的距离(D)和一个技术变量:使用的圆锥体大小(CS)。计算了所有参数之间的每对参数的单变量相关性。使用高斯图形模型 LASSO 选择的最佳输入参数,为输出参数拟合多元回归模型。使用重复的双折交叉验证评估模型。

结果

40 例患者的 BSmax、V10BS 和 V12 的中位数分别为 35.7 Gy、0.14 cc 和 1.28 cc。A、L、WA、WS、D 和 CS 的中位数分别为 43.7°、8.8 mm、2.8 mm、2.7 mm、4.8 mm 和 6 mm。在三个输出变量中,BSmax 与输入变量相关性最强。具体来说,它与输入解剖学变量呈强烈的负相关,与 CS 呈正相关。D 与 BSmax 的相关性为-0.51,是单个输入和输出参数之间最强的相关性,其次是 CS 与 V10BS 之间的相关性为 0.45,A 与 BSmax 之间的相关性为-0.44。V12 与单独的圆锥体大小相关性最强,而不是解剖学。LASSO 确定了 A、D 和 CS 的最佳 3 个特征组合,用于预测 BSmax 和 V10BS。使用交叉验证,具有三个选定特征的多元回归模型产生的相关性强于 BSmax 和 V10BS 本身之间的相关性。

结论

首次应用先进的统计和计算方法研究解剖学和技术变量对 TN SRS 的影响。结果表明这些变量会影响脑干剂量,并使用包括神经入射角、圆锥体大小和等中心点-脑干距离在内的优化的 3 个特征组合建立了合理的强相关性模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验