Department of Molecular Biology and the Lewis-Sigler Institute for Integrative Genomics , Princeton University , Princeton , New Jersey 08544 , United States.
Anal Chem. 2018 Apr 17;90(8):5032-5039. doi: 10.1021/acs.analchem.7b04713. Epub 2018 Mar 30.
Quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g., TMT) has enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice, existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approach (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time, the median coefficient of variation improves from 13% to 4%. Thus, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.
对多个时间点、细胞器和扰动的蛋白质组进行定量分析,对于理解基础生物学和疾病状态至关重要。同量异位标记(例如 TMT)的发展使得能够在几个不同条件下同时测量肽丰度。这些多路复用方法在理论上具有优势,因为它们在吞吐量和测量质量方面具有优势。然而,在实践中,现有的多路复用方法存在关键的局限性。在其简单的实现(TMT-MS2)中,测量结果受到化学噪声的干扰,导致测量精度较差。当前的最先进技术(TMT-MS3)解决了这个问题,但需要专用的四极杆-离子阱-Orbitrap 仪器。互补报告离子方法(TMTc)可产生高精度的测量结果,并且与更多的仪器兼容,如四极杆-Orbitrap。然而,TMTc 所需的聚类解卷积导致测量精度较差。在这里,我们引入了 TMTc+,它将 MS2 隔离步骤的建模添加到解卷积算法中。由此产生的测量结果在精度上与 TMT-MS3/MS2 相当。改进的占空比和更低的过滤要求使得 TMTc+比 TMT-MS3 更灵敏,与 TMT-MS2 相当。同时,与 TMT-MS2 不同,TMTc+能够极好地区分信号和化学噪声,甚至优于 TMT-MS3。最后,我们将 TMTc+与 HeLa 总裂解物的无标记定量蛋白质组学进行了比较,发现 TMTc+在 5 重样品中定量了 7800 个蛋白,而 TMT-MS3 定量了 3900 个蛋白。同时,中值变异系数从 13%提高到 4%。因此,TMTc+通过在更常用的仪器上实现准确、灵敏和精确的多路复用实验,推动了定量蛋白质组学的发展。