Pujari Vyas, Crapse Joseph, Nisbet Connor, Bao Gloria, Ferguson Wessley, Hosfield Christopher M, Rosenblatt Michael, Keber Felix, Wühr Martin
Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
bioRxiv. 2025 Jul 18:2025.07.15.664461. doi: 10.1101/2025.07.15.664461.
Shotgun proteomics hinges on complete enzymatic digestion of proteins into peptides. Incomplete digestion narrows proteome coverage and inflates variability in quantitative workflows, whether label-free DIA or multiplexing with isobaric tags. Sequential Lys-C/Trypsin digestions mitigate missed cleavages at lysine residues, but arginine sites remain a persistent challenge. Arg-C Ultra, a recently released cysteine protease, efficiently targets arginine residues but requires reducing conditions that inactivate Lys-C activity and compromise NHS-ester labeling in multiplexed workflows. Here, we systematically characterized Arg-C Ultra and Lys-C with chromogenic substrates that mimic arginine- and lysine-containing peptides, as well as shotgun proteomics. Arg-C Ultra operates optimally at room temperature, pH 7.5-8.5, under reducing conditions, whereas Lys-C is most active at 37 °C, pH 7.5-8.5, yet rapidly loses activity when exposed to common reductants. Among tested reducing agents, 1 mM TCEP uniquely preserved TMTpro integrity while sustaining Arg-C Ultra activity. Guided by these insights, we established a sequential digestion workflow that is fully compatible with both label-free DIA and TMTpro multiplexing. Proteins are first digested overnight with Lys-C at 37 °C (pH 8.5), then treated with 1 mM TCEP and Arg-C Ultra at room temperature (pH 8.5). The resulting peptides can be analyzed directly by label-free DIA or subjected to TMTpro labeling for multiplexed quantification. Applied to HeLa cell lysates, this protocol achieved >99% arginine and 95% lysine cleavage efficiencies, boosting the number of quantified proteins by 6% in label-free DIA and 11% in TMTproC experiments. Replicate measurements displayed reproducibility that approached the limits set by ion statistics. Thus, the introduced synergistic Lys-C/Arg-C Ultra digestion strategy enhances proteome coverage with excellent quantitative reproducibility across both label-free and multiplexed platforms.
鸟枪法蛋白质组学依赖于将蛋白质完全酶解为肽段。不完全酶解会缩小蛋白质组覆盖范围,并增加定量工作流程中的变异性,无论是无标记的数据独立采集(DIA)还是使用等压标签的多重分析。顺序进行的赖氨酸C/胰蛋白酶酶解可减少赖氨酸残基处的漏切,但精氨酸位点仍然是一个持续存在的挑战。最近发布的半胱氨酸蛋白酶精氨酸C超酶(Arg-C Ultra)能有效靶向精氨酸残基,但需要还原条件,这会使赖氨酸C的活性失活,并在多重工作流程中损害N-羟基琥珀酰亚胺酯(NHS-酯)标记。在这里,我们用模拟含精氨酸和赖氨酸肽段的生色底物以及鸟枪法蛋白质组学系统地表征了精氨酸C超酶和赖氨酸C。精氨酸C超酶在室温、pH 7.5 - 8.5、还原条件下表现最佳,而赖氨酸C在37°C、pH 7.5 - 8.5时活性最高,但暴露于常见还原剂时会迅速失活。在测试的还原剂中,1 mM三(2-羧乙基)膦(TCEP)独特地保持了TMTpro的完整性,同时维持了精氨酸C超酶的活性。基于这些见解,我们建立了一种顺序酶解工作流程,该流程与无标记的DIA和TMTpro多重分析完全兼容。蛋白质首先在37°C(pH 8.5)下用赖氨酸C酶解过夜,然后在室温(pH 8.5)下用1 mM TCEP和精氨酸C超酶处理。所得肽段可直接通过无标记的DIA进行分析,或进行TMTpro标记以进行多重定量。应用于HeLa细胞裂解物时,该方案实现了>99%的精氨酸和95%的赖氨酸裂解效率,在无标记的DIA中使定量蛋白质的数量增加了6%,在TMTproC实验中增加了11%。重复测量显示出的重现性接近离子统计设定的极限。因此,引入的协同赖氨酸C/精氨酸C超酶酶解策略提高了蛋白质组覆盖范围,在无标记和多重平台上均具有出色的定量重现性。