六种川崎病静脉注射免疫球蛋白抵抗预测模型疗效比较。
A comparison of efficacy of six prediction models for intravenous immunoglobulin resistance in Kawasaki disease.
机构信息
Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China.
出版信息
Ital J Pediatr. 2018 Mar 9;44(1):33. doi: 10.1186/s13052-018-0475-z.
BACKGROUND
Kawasaki disease (KD) is the most common pediatric vasculitis. Several models have been established to predict intravenous immunoglobulin (IVIG) resistance. The present study was aimed to evaluate the efficacy of prediction models using the medical data of KD patients.
METHODS
We collected the medical records of patients hospitalized in the Department of Cardiology in Children's Hospital of Soochow University with a diagnosis of KD from Jan 2015 to Dec 2016. IVIG resistance was defined as recrudescent or persistent fever ≥36 h after the end of their IVIG infusion.
RESULTS
Patients with IVIG resistance tended to be younger, have higher occurrence of rash and changes of extremities. They had higher levels of c-reactive protein, aspartate aminotransferase, neutrophils proportion (N%), total bilirubin and lower level of albumin. Our prediction model had a sensitivity of 0.72 and a specificity of 0.75. Sensitivity of Kobayashi, Egami, Kawamura, Sano and Formosa were 0.72, 0.44, 0.48, 0.20, and 0.68, respectively. Specificity of these models were 0.62, 0.82, 0.66, 0.91, and 0.48, respectively.
CONCLUSIONS
Our prediction model had a powerful predictive value in this area, followed by Kobayashi model while all the other prediction models had less excellent performances than ours.
背景
川崎病(KD)是最常见的儿科血管炎。已经建立了几种模型来预测静脉注射免疫球蛋白(IVIG)抵抗。本研究旨在评估使用 KD 患者的医学数据预测模型的疗效。
方法
我们收集了苏州大学附属儿童医院心内科 2015 年 1 月至 2016 年 12 月住院的 KD 患者的病历。IVIG 抵抗定义为 IVIG 输注结束后 36 小时以上复发或持续发热。
结果
IVIG 抵抗患者往往年龄较小,皮疹和四肢变化发生率较高。他们的 C 反应蛋白、天冬氨酸转氨酶、中性粒细胞比例(N%)、总胆红素水平较高,白蛋白水平较低。我们的预测模型具有 0.72 的敏感性和 0.75 的特异性。Kobayashi、Egami、Kawamura、Sano 和 Formosa 模型的敏感性分别为 0.72、0.44、0.48、0.20 和 0.68,特异性分别为 0.62、0.82、0.66、0.91 和 0.48。
结论
我们的预测模型在该领域具有强大的预测价值,其次是 Kobayashi 模型,而其他所有预测模型的表现均不如我们的模型。
相似文献
Arch Iran Med. 2020-1-1
引用本文的文献
本文引用的文献
Pediatr Rheumatol Online J. 2017-3-21
Pediatr Infect Dis J. 2017-5
J Exp Med. 2016-9-19
Environ Health Perspect. 2017-4
Pediatr Infect Dis J. 2016-1