川崎病患者静脉注射免疫球蛋白耐药:基于临床数据的预测。
Intravenous immunoglobulin resistance in Kawasaki disease patients: prediction using clinical data.
机构信息
Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA.
Department of Pediatrics, Haeundae Paik Hospital, Inje University, Busan, South Korea.
出版信息
Pediatr Res. 2024 Feb;95(3):692-697. doi: 10.1038/s41390-023-02519-z. Epub 2023 Feb 16.
BACKGROUND
About 10-20% of Kawasaki disease (KD) patients are resistant to the initial infusion of intravenous immunoglobin (IVIG). The aim of this study was to assess whether IVIG resistance in KD patients could be predicted using standard clinical and laboratory features.
METHODS
Data were from two cohorts: a Korean cohort of 7101 KD patients from 2015 to 2017 and a cohort of 649 KD patients from San Diego enrolled from 1998 to 2021. Features included laboratory values, the worst Z-score from the initial echocardiogram or during hospitalization, and the five clinical KD signs at presentation.
RESULTS
Five machine learning models achieved a maximum median AUC of 0.711 [IQR: 0.706-0.72] in the Korean cohort and 0.696 [IQR: 0.609-0.722] in the San Diego cohort during stratified 10-fold cross-validation using significant laboratory features identified from univariate analysis. Adding the Z-score, KD clinical signs, or both did not considerably improve the median AUC in either cohort.
CONCLUSIONS
Using commonly measured clinical laboratory data alone or in conjunction with echocardiographic findings and clinical features is not sufficient to predict IVIG resistance. Further attempts to predict IVIG resistance will need to incorporate additional data such as transcriptomics, proteomics, and genetics to achieve meaningful predictive utility.
IMPACT
We demonstrated that laboratory, echocardiographic, and clinical findings cannot predict intravenous immunoglobin (IVIG) resistance to a clinically meaningful extent using machine learning in a homogenous Asian or ethnically diverse population of patients with Kawasaki disease (KD). Visualizing these features using uniform manifold approximation and projection (UMAP) is an important step to evaluate predictive utility in a qualitative manner. Further attempts to predict IVIG resistance in KD patients will need to incorporate novel biomarkers or other specialized features such as genetic differences or transcriptomics to be clinically useful.
背景
约 10-20%川崎病(KD)患者对初始静脉注射免疫球蛋白(IVIG)治疗无反应。本研究旨在评估使用标准临床和实验室特征是否可预测 KD 患者的 IVIG 耐药性。
方法
数据来自两个队列:2015 年至 2017 年来自韩国的 7101 例 KD 患者队列和 1998 年至 2021 年来自圣地亚哥的 649 例 KD 患者队列。特征包括实验室值、初始超声心动图或住院期间最差 Z 评分以及就诊时的 5 个 KD 临床体征。
结果
在韩国队列中,使用单变量分析确定的显著实验室特征进行分层 10 倍交叉验证时,5 种机器学习模型的最大中位数 AUC 为 0.711 [IQR:0.706-0.72],在圣地亚哥队列中为 0.696 [IQR:0.609-0.722]。在两个队列中,添加 Z 评分、KD 临床体征或两者都不能显著提高中位数 AUC。
结论
仅使用常用的临床实验室数据或结合超声心动图发现和临床特征不足以预测 IVIG 耐药性。进一步预测 IVIG 耐药性的尝试需要纳入额外的数据,如转录组学、蛋白质组学和遗传学,以实现有意义的预测效用。
意义
我们证明,使用机器学习在同质亚洲或种族多样化的川崎病(KD)患者人群中,实验室、超声心动图和临床特征无法在临床上有意义的程度上预测 IVIG 耐药性。使用统一流形逼近和投影(UMAP)可视化这些特征是定性评估预测效用的重要步骤。进一步预测 KD 患者 IVIG 耐药性的尝试需要纳入新的生物标志物或其他专门特征,如遗传差异或转录组学,以具有临床实用性。