Abadi Avi, Kosa Gabor
School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
Currently with the Department of Biomedical Engineering, University of Basel, Alschwill, Switzerland.
Biomed Microdevices. 2018 Mar 9;20(2):28. doi: 10.1007/s10544-018-0271-y.
Automatic manipulation of microscopic particles is very important in biology, especially in new lab-on-chip systems for automatic testing and DNA manipulation. We suggest a particle manipulation system (PMS) based on vibrating piezoelectric beams creating steady streaming flow in a viscous liquid. The flow is nearly unidirectional and it is used to control the position and velocity of the particles in the workspace of the PMS. The particles position in the PMS are controlled by visual feedback. This study presents the manipulation method, the system's model describing its behavior and characterizes experimentally its performance. The PMS is capable moving a 2-200 μm particle in a workspace of 8x8 mm with an absolute accuracy of 0.2 μm. The characteristic velocity in 500 cP Si oil, is 20 μm/s using an actuation voltage amplitude of 5 V and can reach 250 μm/s using 15 V respectively. We can also move a constellation of several particles in various sizes without changing the distance between them. The accuracy of the manipulation can be increased by enhancing the amplification of the microscope on the expanse of a smaller workspace field of view.