Suppr超能文献

Acuros CTS:一种用于计算机断层扫描散射的快速、线性 Boltzmann 输运方程求解器——第一部分:核心算法和验证。

Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.

机构信息

Varian Medical Systems, Palo Alto, CA, 94304, USA.

出版信息

Med Phys. 2018 May;45(5):1899-1913. doi: 10.1002/mp.12850. Epub 2018 Apr 6.

Abstract

PURPOSE

To describe Acuros CTS, a new software tool for rapidly and accurately estimating scatter in x-ray projection images by deterministically solving the linear Boltzmann transport equation (LBTE).

METHODS

The LBTE describes the behavior of particles as they interact with an object across spatial, energy, and directional (propagation) domains. Acuros CTS deterministically solves the LBTE by modeling photon transport associated with an x-ray projection in three main steps: (a) Ray tracing photons from the x-ray source into the object where they experience their first scattering event and form scattering sources. (b) Propagating photons from their first scattering sources across the object in all directions to form second scattering sources, then repeating this process until all high-order scattering sources are computed using the source iteration method. (c) Ray-tracing photons from scattering sources within the object to the detector, accounting for the detector's energy and anti-scatter grid responses. To make this process computationally tractable, a combination of analytical and discrete methods is applied. The three domains are discretized using the Linear Discontinuous Finite Elements, Multigroup, and Discrete Ordinates methods, respectively, which confer the ability to maintain the accuracy of a continuous solution. Furthermore, through the implementation in CUDA, we sought to exploit the parallel computing capabilities of graphics processing units (GPUs) to achieve the speeds required for clinical utilization. Acuros CTS was validated against Geant4 Monte Carlo simulations using two digital phantoms: (a) a water phantom containing lung, air, and bone inserts (WLAB phantom) and (b) a pelvis phantom derived from a clinical CT dataset. For these studies, we modeled the TrueBeam (Varian Medical Systems, Palo Alto, CA) kV imaging system with a source energy of 125 kVp. The imager comprised a 600 μm-thick Cesium Iodide (CsI) scintillator and a 10:1 one-dimensional anti-scatter grid. For the WLAB studies, the full-fan geometry without a bowtie filter was used (with and without the anti-scatter grid). For the pelvis phantom studies, a half-fan geometry with bowtie was used (with the anti-scatter grid). Scattered and primary photon fluences and energies deposited in the detector were recorded.

RESULTS

The Acuros CTS and Monte Carlo results demonstrated excellent agreement. For the WLAB studies, the average percent difference between the Monte Carlo- and Acuros-generated scattered photon fluences at the face of the detector was -0.7%. After including the detector response, the average percent differences between the Monte Carlo- and Acuros-generated scatter fractions (SF) were -0.1% without the grid and 0.6% with the grid. For the digital pelvis simulation, the Monte Carlo- and Acuros-generated SFs agreed to within 0.1% on average, despite the scatter-to-primary ratios (SPRs) being as high as 5.5. The Acuros CTS computation time for each scatter image was ~1 s using a single GPU.

CONCLUSIONS

Acuros CTS enables a fast and accurate calculation of scatter images by deterministically solving the LBTE thus offering a computationally attractive alternative to Monte Carlo methods. Part II describes the application of Acuros CTS to scatter correction of CBCT scans on the TrueBeam system.

摘要

目的

描述 Acuros CTS,这是一种新的软件工具,用于通过确定性求解线性 Boltzmann 输运方程(LBTE)快速准确地估计 X 射线投影图像中的散射。

方法

LBTE 描述了粒子与物体相互作用时在空间、能量和方向(传播)域中的行为。Acuros CTS 通过在三个主要步骤中建模与 X 射线投影相关的光子输运来确定性地求解 LBTE:(a)从 X 射线源追踪光子进入物体,在物体中它们经历第一次散射事件并形成散射源。(b)在各个方向上从第一个散射源传播光子穿过物体,形成第二个散射源,然后使用源迭代方法重复此过程,直到计算出所有高阶散射源。(c)从物体内的散射源追踪光子到探测器,同时考虑探测器的能量和反散射栅格响应。为了使这个过程在计算上可行,应用了分析和离散方法的组合。三个域分别使用线性不连续有限元、多群和离散坐标方法进行离散化,这使得能够保持连续解的准确性。此外,通过在 CUDA 中的实现,我们试图利用图形处理单元(GPU)的并行计算能力来实现临床应用所需的速度。使用两个数字体模:(a)包含肺、空气和骨骼插入物的水体模(WLAB 体模)和(b)源自临床 CT 数据集的骨盆体模,对 Acuros CTS 进行了与 Geant4 蒙特卡罗模拟的验证。对于这些研究,我们用 125 kVp 的源能量模拟了 TrueBeam(Varian Medical Systems,Palo Alto,CA)kV 成像系统。成像仪由 600 µm 厚的碘化铯(CsI)闪烁体和 10:1 一维反散射栅格组成。对于 WLAB 研究,使用了全扇几何形状(带或不带蝴蝶结滤光片),而没有使用反散射栅格。对于骨盆体模研究,使用带有蝴蝶结的半扇几何形状(带反散射栅格)。记录了探测器中沉积的散射和初级光子的通量和能量。

结果

Acuros CTS 和蒙特卡罗的结果表现出极好的一致性。对于 WLAB 研究,蒙特卡罗和 Acuros 生成的散射光子通量在探测器表面的平均百分比差异为-0.7%。在包括探测器响应后,蒙特卡罗和 Acuros 生成的散射分数(SF)的平均百分比差异在没有栅格的情况下为-0.1%,在有栅格的情况下为 0.6%。对于数字骨盆模拟,尽管散射与初级比(SPR)高达 5.5,但蒙特卡罗和 Acuros 生成的 SF 平均相差在 0.1%以内。使用单个 GPU,每个散射图像的 Acuros CTS 计算时间约为 1 秒。

结论

Acuros CTS 通过确定性求解 LBTE 实现了散射图像的快速准确计算,从而为蒙特卡罗方法提供了一种具有吸引力的计算替代方案。第二部分描述了 Acuros CTS 在 TrueBeam 系统上对锥形束 CT 扫描的散射校正中的应用。

相似文献

3
A fast, linear Boltzmann transport equation solver for computed tomography dose calculation (Acuros CTD).
Med Phys. 2019 Feb;46(2):925-933. doi: 10.1002/mp.13305. Epub 2018 Dec 24.
6
Impact of bowtie filter and detector collimation on multislice CT scatter profiles: A simulation study.
Med Phys. 2021 Feb;48(2):852-870. doi: 10.1002/mp.14652. Epub 2020 Dec 23.
7
Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams.
Phys Med Biol. 2010 Feb 7;55(3):581-98. doi: 10.1088/0031-9155/55/3/002. Epub 2010 Jan 7.
10
Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections.
Med Phys. 2013 Nov;40(11):111901. doi: 10.1118/1.4822484.

引用本文的文献

2
Localization accuracy of 6-second CBCT for lung IGRT with various breathing patterns.
J Appl Clin Med Phys. 2025 Jul;26(7):e70130. doi: 10.1002/acm2.70130. Epub 2025 May 29.
3
Multi-institutional study on image quality for a novel CBCT solution on O-ring linac.
J Appl Clin Med Phys. 2025 Jun;26(6):e70023. doi: 10.1002/acm2.70023. Epub 2025 Mar 6.
7
Monte Carlo methods for medical imaging research.
Biomed Eng Lett. 2024 Sep 5;14(6):1195-1205. doi: 10.1007/s13534-024-00423-x. eCollection 2024 Nov.

本文引用的文献

2
Optimal combination of anti-scatter grids and software correction for CBCT imaging.
Med Phys. 2017 Sep;44(9):4437-4451. doi: 10.1002/mp.12385. Epub 2017 Aug 2.
4
Implementation of an efficient Monte Carlo calculation for CBCT scatter correction: phantom study.
J Appl Clin Med Phys. 2015 Jul 8;16(4):216–227. doi: 10.1120/jacmp.v16i4.5393.
5
A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy.
Phys Med Biol. 2015 May 7;60(9):3567-87. doi: 10.1088/0031-9155/60/9/3567. Epub 2015 Apr 10.
6
High-fidelity artifact correction for cone-beam CT imaging of the brain.
Phys Med Biol. 2015 Feb 21;60(4):1415-39. doi: 10.1088/0031-9155/60/4/1415. Epub 2015 Jan 22.
7
Patient-specific scatter correction for flat-panel detector-based cone-beam CT imaging.
Phys Med Biol. 2015 Feb 7;60(3):1339-65. doi: 10.1088/0031-9155/60/3/1339. Epub 2015 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验