Suppr超能文献

钠离子金属阳极与硫化物固态电解质界面的新认识:实验与计算的联合研究。

New Insights into the Interphase between the Na Metal Anode and Sulfide Solid-State Electrolytes: A Joint Experimental and Computational Study.

机构信息

Department of NanoEngineering , University of California, San Diego , La Jolla , California 92093-0448 , United States.

Sustainable Power and Energy Center (SPEC) , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0448 , United States.

出版信息

ACS Appl Mater Interfaces. 2018 Mar 28;10(12):10076-10086. doi: 10.1021/acsami.7b19037. Epub 2018 Mar 15.

Abstract

In this work, we investigated the interface between the sodium anode and the sulfide-based solid electrolytes NaSbS (NAS), NaPS (NPS), and Cl-doped NPS (NPSC) in all-solid-state-batteries (ASSBs). Even though these electrolytes have demonstrated high ionic conductivities in the range of 1 mS cm at ambient temperatures, sulfide sold-state electrolytes (SSEs) are known to be unstable with Na metal, though the exact reaction mechanism and kinetics of the reaction remain unclear. We demonstrate that the primary cause of capacity fade and cell failure is a chemical reaction spurred on by electrochemical cycling that takes place at the interface between the Na anode and the SSEs. To investigate the properties of the Na-solid electrolyte interphase (SSEI) and its effect on cell performance, the SSEI was predicted computationally to be composed of NaS and NaSb for NAS and identified experimentally via X-ray photoelectron spectroscopy (XPS). These two compounds give the SSEI mixed ionic- and electronic-conducting properties, which promotes continued SSEI growth, which increases the cell impedance at the expense of cell performance and cycle life. The SSEI for NPS was similarly found to be comprised of NaS and NaP, but XPS analysis of Cl-doped NPS (NPSC) showed the presence of an additional compound at the SSEI, NaCl, which was found to mitigate the decomposition of NPS. The methodologies presented in this work can be used to predict and optimize the electrochemical behavior of an all-solid-state cell. Such joint computational and experimental efforts can inform strategies for engineering a stable electrolyte and SSEI to avoid such reactions. Through this work, we call for more emphasis on SSE compatibility with both anodes and cathodes, essential for improving the electrochemical properties, longevity, and practicality of Na-based ASSBs.

摘要

在这项工作中,我们研究了全固态电池(ASSB)中钠阳极与基于硫化物的固体电解质 NaSbS(NAS)、NaPS(NPS)和 Cl 掺杂的 NPS(NPSC)之间的界面。尽管这些电解质在环境温度下表现出 1 mS cm 范围内的高离子电导率,但众所周知,硫化物固态电解质(SSE)与钠金属不稳定,尽管确切的反应机制和反应动力学仍不清楚。我们证明,容量衰减和电池失效的主要原因是电化学循环在钠阳极和 SSE 之间的界面上引发的化学反应。为了研究 Na-固体电解质界面(SSEI)的性质及其对电池性能的影响,通过计算预测 SSEI 由 NAS 中的 NaS 和 NaSb 组成,并通过 X 射线光电子能谱(XPS)实验确定。这两种化合物赋予 SSEI 混合离子和电子导电性质,这促进了 SSEI 的持续生长,从而增加了电池的阻抗,牺牲了电池性能和循环寿命。同样发现 NPS 的 SSEI 由 NaS 和 NaP 组成,但对 Cl 掺杂的 NPS(NPSC)的 XPS 分析表明,SSEI 中存在另一种化合物 NaCl,它被发现可以缓解 NPS 的分解。本工作中提出的方法可用于预测和优化全固态电池的电化学行为。这种联合计算和实验的努力可以为设计稳定的电解质和 SSEI 提供信息,以避免这种反应。通过这项工作,我们呼吁更加重视 SSE 与阳极和阴极的兼容性,这对于提高基于 Na 的 ASSB 的电化学性能、耐久性和实用性至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验