Suppr超能文献

固态电池的优化:综述

Building Better Batteries in the Solid State: A Review.

作者信息

Mauger Alain, Julien Christian M, Paolella Andrea, Armand Michel, Zaghib Karim

机构信息

Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France.

Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada.

出版信息

Materials (Basel). 2019 Nov 25;12(23):3892. doi: 10.3390/ma12233892.

Abstract

Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes , there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O, and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.

摘要

目前,大多数商业化的锂电池都采用液体电解质,尽管它们容易引发电池起火危险,但因为它们能避免在阳极侧形成枝晶,而这在固态电池中是常见问题。在两年前的一篇综述中,我们聚焦于固态可充电电池中锂金属面临的挑战和问题,指出在解决这一缺点方面取得的进展,并得出结论,预计在不久的将来,固态电池可能会在不同应用中再次战胜液体电池。然而,固态电池的另一个缺点是电解质的离子电导率较低。因此,在过去几年里人们投入了大量研究工作来克服这个问题,并且已经取得了显著进展。本综述的目的是报告这些近期的研究工作以及固态电解质的最新进展。除了固态电解质外,还有其他主要为固体但添加了一些液体的电解质。在某些情况下,添加的液体量仅为微升量级;例如,添加液体的目的仅在于改善固态电解质与电极之间的接触。在其他一些情况下,液体量较大,如凝胶聚合物的情况。如果液体量小到足以维持电池的安全性,这也是一种可接受的解决方案;本综述也考虑了此类情况。我们研究了不同的化学体系,不仅包括锂空气电池、锂氧电池和锂硫电池,还包括也在进行深入研究的钠离子电池。同时也考虑了商业化面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efa9/6926585/be36041ce49e/materials-12-03892-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验