Kuriki Yoma, Nakayama Joma, Takano Kosuke, Uchida Atsushi
Opt Express. 2018 Mar 5;26(5):5777-5788. doi: 10.1364/OE.26.005777.
We experimentally investigate delay-based photonic reservoir computing using semiconductor lasers with optical feedback and injection. We apply different types of temporal mask signals, such as digital, chaos, and colored-noise mask signals, as the weights between the input signal and the virtual nodes in the reservoir. We evaluate the performance of reservoir computing by using a time-series prediction task for the different mask signals. The chaos mask signal shows superior performance than that of the digital mask signals. However, similar prediction errors can be achieved for the chaos and colored-noise mask signals. Mask signals with larger amplitudes result in better performance for all mask signals in the range of the amplitude accessible in our experiment. The performance of reservoir computing is strongly dependent on the cut-off frequency of the colored-noise mask signals, which is related to the resonance of the relaxation oscillation frequency of the laser used as the reservoir.
我们利用具有光反馈和注入的半导体激光器,对基于延迟的光子储层计算进行了实验研究。我们应用不同类型的时间掩码信号,如数字、混沌和有色噪声掩码信号,作为输入信号与储层中虚拟节点之间的权重。我们通过对不同掩码信号进行时间序列预测任务来评估储层计算的性能。混沌掩码信号表现出比数字掩码信号更优的性能。然而,混沌和有色噪声掩码信号可实现相似的预测误差。在我们实验可达到的幅度范围内,对于所有掩码信号,幅度较大的掩码信号会带来更好的性能。储层计算的性能强烈依赖于有色噪声掩码信号的截止频率,这与用作储层的激光器弛豫振荡频率的共振有关。