Nguimdo Romain Modeste, Verschaffelt Guy, Danckaert Jan, Van der Sande Guy
Opt Express. 2014 Apr 7;22(7):8672-86. doi: 10.1364/OE.22.008672.
Semiconductor lasers subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By optically implementing a neuro-inspired computational scheme, called reservoir computing, based on the transient response to optical data injection, high processing speeds have been demonstrated. While previous efforts have focused on signal bandwidths limited by the semiconductor laser's relaxation oscillation frequency, we demonstrate numerically that the much faster phase response makes significantly higher processing speeds attainable. Moreover, this also leads to shorter external cavity lengths facilitating future on-chip implementations. We numerically benchmark our system on a chaotic time-series prediction task considering two different feedback configurations. The results show that a prediction error below 4% can be obtained when the data is processed at 0.25 GSamples/s. In addition, our insight into the phase dynamics of optical injection in a semiconductor laser also provides a clear understanding of the system performance at different pump current levels, even below solitary laser threshold. Considering spontaneous emission noise and noise in the readout layer, we obtain good prediction performance at fast processing speeds for realistic values of the noise strength.
受延迟光反馈影响的半导体激光器最近在解决计算难题方面展现出了巨大潜力。通过基于对光数据注入的瞬态响应,以光学方式实现一种受神经启发的计算方案——储层计算,已证明其具有高处理速度。尽管先前的研究主要集中在受半导体激光器弛豫振荡频率限制的信号带宽上,但我们通过数值模拟证明,更快的相位响应能够实现显著更高的处理速度。此外,这还会使外腔长度更短,便于未来的片上实现。我们在考虑两种不同反馈配置的混沌时间序列预测任务上,对我们的系统进行了数值基准测试。结果表明,当以0.25 GSamples/s的速率处理数据时,预测误差可低于4%。此外,我们对半导体激光器中光注入相位动力学的深入理解,也能清晰地了解系统在不同泵浦电流水平下的性能,甚至在低于单模激光阈值的情况下也是如此。考虑到自发发射噪声和读出层中的噪声,对于实际的噪声强度值,我们在快速处理速度下获得了良好的预测性能。