Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.
Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.
Sleep Med. 2018 Apr;44:97-105. doi: 10.1016/j.sleep.2017.11.1141. Epub 2017 Dec 21.
To evaluate rapid eye movement (REM) muscular activity in narcolepsy by applying five algorithms to electromyogram (EMG) recordings, and to investigate its value for narcolepsy diagnosis.
PATIENTS/METHODS: A modified version of phasic EMG metric (mPEM), muscle activity index (MAI), REM atonia index (RAI), supra-threshold REM EMG activity metric (STREAM), and Frandsen method (FR) were calculated from polysomnography recordings of 20 healthy controls, 18 clinic controls (subjects suspected with narcolepsy but finally diagnosed without any sleep abnormality), 16 narcolepsy type one without REM sleep behavior disorder (RBD), nine narcolepsy type one with RBD, and 18 narcolepsy type two. Diagnostic value of metrics in differentiating between groups was quantified by area under the receiver operating characteristic curve (AUC). Correlations among the metrics and cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) values were calculated using linear models.
All metrics excluding STREAM found significantly higher muscular activity in narcolepsy one cases versus controls (p < 0.05). Moreover, RAI showed high sensitivity in the detection of RBD. The mPEM achieved the highest AUC in differentiating healthy controls from narcoleptic subjects. The RAI best differentiated between narcolepsy 1 and 2. Lower CSF-hcrt-1 values correlated with high muscular activity quantified by mPEM, sMAI, lMAI, PEM and FR (p < 0.05).
This automatic analysis showed higher number of muscle activations in narcolepsy 1 compared to controls. This finding might play a supportive role in diagnosing narcolepsy and in discriminating narcolepsy subtypes. Moreover, the negative correlation between CSF-hcrt-1 level and REM muscular activity supported a role for hypocretin in the control of motor tone during REM sleep.
通过应用五种算法对肌电图(EMG)记录进行分析,评估发作性睡病患者的快速眼动(REM)肌肉活动,并探讨其对发作性睡病诊断的价值。
对 20 例健康对照者、18 例临床对照者(怀疑发作性睡病但最终无任何睡眠异常)、16 例无 REM 睡眠行为障碍的发作性睡病 1 型(n1-RBD)患者、9 例有 REM 睡眠行为障碍的发作性睡病 1 型(n1-RBD)患者和 18 例发作性睡病 2 型(n2)患者的多导睡眠图记录进行分析,计算改良相位 EMG 指标(mPEM)、肌肉活动指数(MAI)、REM 弛缓指数(RAI)、超阈值 REM EMG 活动指标(STREAM)和 Frandsen 方法(FR)。采用受试者工作特征曲线下面积(AUC)评价各指标在组间鉴别诊断中的价值。采用线性模型计算各指标与脑脊液食欲素-1(CSF-hcrt-1)值之间的相关性。
除 STREAM 外,所有指标均显示发作性睡病 1 型患者的肌肉活动显著高于对照组(p<0.05)。此外,RAI 对 RBD 的检测具有较高的敏感性。mPEM 鉴别健康对照者与发作性睡病患者的 AUC 最高。RAI 最佳鉴别发作性睡病 1 型与 2 型。较低的 CSF-hcrt-1 值与 mPEM、sMAI、lMAI、PEM 和 FR 定量的 REM 肌肉活动高呈负相关(p<0.05)。
本研究采用自动分析方法显示发作性睡病 1 型患者的 REM 肌肉活动较对照组明显增加。这一发现可能有助于诊断发作性睡病,有助于鉴别发作性睡病亚型。此外,CSF-hcrt-1 水平与 REM 肌肉活动之间的负相关支持了食欲素在 REM 睡眠期间对运动肌张力的控制作用。