Suppr超能文献

U-Sleep:弹性高频睡眠分期

U-Sleep: resilient high-frequency sleep staging.

作者信息

Perslev Mathias, Darkner Sune, Kempfner Lykke, Nikolic Miki, Jennum Poul Jørgen, Igel Christian

机构信息

Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.

Danish Center for Sleep Medicine, Rigshospitalet, Copenhagen, Denmark.

出版信息

NPJ Digit Med. 2021 Apr 15;4(1):72. doi: 10.1038/s41746-021-00440-5.

Abstract

Sleep disorders affect a large portion of the global population and are strong predictors of morbidity and all-cause mortality. Sleep staging segments a period of sleep into a sequence of phases providing the basis for most clinical decisions in sleep medicine. Manual sleep staging is difficult and time-consuming as experts must evaluate hours of polysomnography (PSG) recordings with electroencephalography (EEG) and electrooculography (EOG) data for each patient. Here, we present U-Sleep, a publicly available, ready-to-use deep-learning-based system for automated sleep staging ( sleep.ai.ku.dk ). U-Sleep is a fully convolutional neural network, which was trained and evaluated on PSG recordings from 15,660 participants of 16 clinical studies. It provides accurate segmentations across a wide range of patient cohorts and PSG protocols not considered when building the system. U-Sleep works for arbitrary combinations of typical EEG and EOG channels, and its special deep learning architecture can label sleep stages at shorter intervals than the typical 30 s periods used during training. We show that these labels can provide additional diagnostic information and lead to new ways of analyzing sleep. U-Sleep performs on par with state-of-the-art automatic sleep staging systems on multiple clinical datasets, even if the other systems were built specifically for the particular data. A comparison with consensus-scores from a previously unseen clinic shows that U-Sleep performs as accurately as the best of the human experts. U-Sleep can support the sleep staging workflow of medical experts, which decreases healthcare costs, and can provide highly accurate segmentations when human expertize is lacking.

摘要

睡眠障碍影响着全球很大一部分人口,并且是发病和全因死亡率的有力预测指标。睡眠分期将一段睡眠划分为一系列阶段,为睡眠医学中的大多数临床决策提供依据。人工睡眠分期既困难又耗时,因为专家必须针对每位患者,利用脑电图(EEG)和眼电图(EOG)数据评估数小时的多导睡眠图(PSG)记录。在此,我们展示了U-Sleep,这是一个公开可用、随时可用的基于深度学习的自动睡眠分期系统(sleep.ai.ku.dk)。U-Sleep是一个全卷积神经网络,它在16项临床研究的15660名参与者的PSG记录上进行了训练和评估。它能在广泛的患者队列和构建系统时未考虑的PSG协议中提供准确的分割。U-Sleep适用于典型EEG和EOG通道的任意组合,其特殊的深度学习架构能够以比训练期间使用的典型30秒间隔更短的时间间隔标记睡眠阶段。我们表明,这些标记可以提供额外的诊断信息,并带来分析睡眠的新方法。在多个临床数据集上,U-Sleep的表现与最先进的自动睡眠分期系统相当,即使其他系统是专门针对特定数据构建的。与一个此前未见过的诊所的共识评分进行比较表明,U-Sleep的表现与最优秀的人类专家一样准确。U-Sleep可以支持医学专家的睡眠分期工作流程,这降低了医疗成本,并且在缺乏人类专业知识时能够提供高度准确的分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dc/8050216/fff543c0deab/41746_2021_440_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验