Suppr超能文献

多指协同作用与手部肌肉结构

Multi-finger synergies and the muscular apparatus of the hand.

作者信息

Cuadra Cristian, Bartsch Angelo, Tiemann Paula, Reschechtko Sasha, Latash Mark L

机构信息

Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.

Escuela Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Calle Quillota 980, Viña del Mar, Chile.

出版信息

Exp Brain Res. 2018 May;236(5):1383-1393. doi: 10.1007/s00221-018-5231-5. Epub 2018 Mar 12.

Abstract

We explored whether the synergic control of the hand during multi-finger force production tasks depends on the hand muscles involved. Healthy subjects performed accurate force production tasks and targeted force pulses while pressing against loops positioned at the level of fingertips, middle phalanges, and proximal phalanges. This varied the involvement of the extrinsic and intrinsic finger flexors. The framework of the uncontrolled manifold (UCM) hypothesis was used to analyze the structure of inter-trial variance, motor equivalence, and anticipatory synergy adjustments prior to the force pulse in the spaces of finger forces and finger modes (hypothetical finger-specific control signals). Subjects showed larger maximal force magnitudes at the proximal site of force production. There were synergies stabilizing total force during steady-state phases across all three sites of force production; no differences were seen across the sites in indices of structure of variance, motor equivalence, or anticipatory synergy adjustments. Indices of variance, which did not affect the task (within the UCM), correlated with motor equivalent motion between the steady states prior to and after the force pulse; in contrast, variance affecting task performance did not correlate with non-motor equivalent motion. The observations are discussed within the framework of hierarchical control with referent coordinates for salient effectors at each level. The findings suggest that multi-finger synergies are defined at the level of abundant transformation between the low-dimensional hand level and higher dimensional finger level while being relatively immune to transformations between the finger level and muscle level. The results also support the scheme of control with two classes of neural variables that define referent coordinates and gains in back-coupling loops between hierarchical control levels.

摘要

我们探究了在多手指力产生任务中手部的协同控制是否取决于所涉及的手部肌肉。健康受试者在按压位于指尖、中指指骨和近指指骨水平的环时,执行精确的力产生任务和目标力脉冲。这改变了外在和内在手指屈肌的参与情况。使用非受控流形(UCM)假设的框架来分析试验间方差的结构、运动等效性以及在手指力和手指模式(假设的手指特定控制信号)空间中力脉冲之前的预期协同调整。受试者在力产生的近端部位表现出更大的最大力大小。在所有三个力产生部位的稳态阶段,都存在稳定总力的协同作用;在方差结构、运动等效性或预期协同调整的指标方面,各部位之间没有差异。不影响任务的方差指标(在UCM内)与力脉冲前后稳态之间的运动等效运动相关;相反,影响任务表现的方差与非运动等效运动不相关。在具有各级显著效应器参考坐标的分层控制框架内讨论了这些观察结果。研究结果表明,多手指协同作用在低维手部水平和高维手指水平之间丰富转换的层面上定义,同时相对不受手指水平和肌肉水平之间转换的影响。结果还支持了具有两类神经变量的控制方案,这两类神经变量定义了分层控制水平之间反馈耦合回路中的参考坐标和增益。

相似文献

1
Multi-finger synergies and the muscular apparatus of the hand.
Exp Brain Res. 2018 May;236(5):1383-1393. doi: 10.1007/s00221-018-5231-5. Epub 2018 Mar 12.
2
The synergic control of multi-finger force production: stability of explicit and implicit task components.
Exp Brain Res. 2017 Jan;235(1):1-14. doi: 10.1007/s00221-016-4768-4. Epub 2016 Sep 6.
3
Stability of hand force production. II. Ascending and descending synergies.
J Neurophysiol. 2018 Sep 1;120(3):1045-1060. doi: 10.1152/jn.00045.2018. Epub 2018 Jun 6.
4
Finger interaction during accurate multi-finger force production tasks in young and elderly persons.
Exp Brain Res. 2004 Jun;156(3):282-92. doi: 10.1007/s00221-003-1786-9. Epub 2004 Feb 19.
5
Learning multi-finger synergies: an uncontrolled manifold analysis.
Exp Brain Res. 2004 Aug;157(3):336-50. doi: 10.1007/s00221-004-1850-0. Epub 2004 Mar 20.
6
Stability of hand force production. I. Hand level control variables and multifinger synergies.
J Neurophysiol. 2017 Dec 1;118(6):3152-3164. doi: 10.1152/jn.00485.2017. Epub 2017 Sep 13.
7
Stability of steady hand force production explored across spaces and methods of analysis.
Exp Brain Res. 2018 Jun;236(6):1545-1562. doi: 10.1007/s00221-018-5238-y. Epub 2018 Mar 22.
8
Effects of muscle vibration on multi-finger interaction and coordination.
Exp Brain Res. 2013 Aug;229(1):103-11. doi: 10.1007/s00221-013-3597-y. Epub 2013 Jun 5.
9
Optimality and stability of intentional and unintentional actions: II. Motor equivalence and structure of variance.
Exp Brain Res. 2017 Feb;235(2):457-470. doi: 10.1007/s00221-016-4806-2. Epub 2016 Oct 24.
10
Synergies at the level of motor units in single-finger and multi-finger tasks.
Exp Brain Res. 2021 Sep;239(9):2905-2923. doi: 10.1007/s00221-021-06180-y. Epub 2021 Jul 26.

引用本文的文献

1
Evolution, biomechanics, and neurobiology converge to explain selective finger motor control.
Physiol Rev. 2024 Jul 1;104(3):983-1020. doi: 10.1152/physrev.00030.2023. Epub 2024 Feb 22.
2
Bio-Inspired Control System for Fingers Actuated by Multiple SMA Actuators.
Biomimetics (Basel). 2022 May 13;7(2):62. doi: 10.3390/biomimetics7020062.
3
Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair.
Exp Brain Res. 2022 Jan;240(1):321-340. doi: 10.1007/s00221-021-06255-w. Epub 2021 Nov 2.
4
Synergies at the level of motor units in single-finger and multi-finger tasks.
Exp Brain Res. 2021 Sep;239(9):2905-2923. doi: 10.1007/s00221-021-06180-y. Epub 2021 Jul 26.
5
Preparation to a quick whole-body action: control with referent body orientation and multi-muscle synergies.
Exp Brain Res. 2019 May;237(5):1361-1374. doi: 10.1007/s00221-019-05510-5. Epub 2019 Mar 15.

本文引用的文献

1
Development of finger force coordination in children.
Exp Brain Res. 2017 Dec;235(12):3709-3720. doi: 10.1007/s00221-017-5093-2. Epub 2017 Sep 21.
2
Synergies and Motor Equivalence in Voluntary Sway Tasks: The Effects of Visual and Mechanical Constraints.
J Mot Behav. 2018 Sep-Oct;50(5):492-509. doi: 10.1080/00222895.2017.1367642. Epub 2017 Sep 15.
3
Stability of hand force production. I. Hand level control variables and multifinger synergies.
J Neurophysiol. 2017 Dec 1;118(6):3152-3164. doi: 10.1152/jn.00485.2017. Epub 2017 Sep 13.
4
Separable systems for recovery of finger strength and control after stroke.
J Neurophysiol. 2017 Aug 1;118(2):1151-1163. doi: 10.1152/jn.00123.2017. Epub 2017 May 31.
5
Motor equivalence and structure of variance: multi-muscle postural synergies in Parkinson's disease.
Exp Brain Res. 2017 Jul;235(7):2243-2258. doi: 10.1007/s00221-017-4971-y. Epub 2017 Apr 28.
6
Biological Movement and Laws of Physics.
Motor Control. 2017 Jul;21(3):327-344. doi: 10.1123/mc.2016-0016. Epub 2016 Aug 19.
7
Towards physics of neural processes and behavior.
Neurosci Biobehav Rev. 2016 Oct;69:136-46. doi: 10.1016/j.neubiorev.2016.08.005. Epub 2016 Aug 4.
8
Synergies in the space of control variables within the equilibrium-point hypothesis.
Neuroscience. 2016 Feb 19;315:150-61. doi: 10.1016/j.neuroscience.2015.12.012. Epub 2015 Dec 14.
9
Processes underlying unintentional finger-force changes in the absence of visual feedback.
Exp Brain Res. 2015 Mar;233(3):711-21. doi: 10.1007/s00221-014-4148-x. Epub 2014 Nov 23.
10
The effects of practice on coordination.
Exerc Sport Sci Rev. 2014 Jan;42(1):37-42. doi: 10.1249/JES.0000000000000002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验