Suppr超能文献

斜坡谱噪声下定位性能的分类图像。

Classification images for localization performance in ramp-spectrum noise.

机构信息

Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.

Division of Imaging Diagnostics and Software Reliability, United States Food and Drug Administration, White Oaks, MD, 20993, USA.

出版信息

Med Phys. 2018 May;45(5):1970-1984. doi: 10.1002/mp.12857. Epub 2018 Apr 11.

Abstract

PURPOSE

This study investigates forced localization of targets in simulated images with statistical properties similar to trans-axial sections of x-ray computed tomography (CT) volumes. A total of 24 imaging conditions are considered, comprising two target sizes, three levels of background variability, and four levels of frequency apodization. The goal of the study is to better understand how human observers perform forced-localization tasks in images with CT-like statistical properties.

METHODS

The transfer properties of CT systems are modeled by a shift-invariant transfer function in addition to apodization filters that modulate high spatial frequencies. The images contain noise that is the combination of a ramp-spectrum component, simulating the effect of acquisition noise in CT, and a power-law component, simulating the effect of normal anatomy in the background, which are modulated by the apodization filter as well. Observer performance is characterized using two psychophysical techniques: efficiency analysis and classification image analysis. Observer efficiency quantifies how much diagnostic information is being used by observers to perform a task, and classification images show how that information is being accessed in the form of a perceptual filter.

RESULTS

Psychophysical studies from five subjects form the basis of the results. Observer efficiency ranges from 29% to 77% across the different conditions. The lowest efficiency is observed in conditions with uniform backgrounds, where significant effects of apodization are found. The classification images, estimated using smoothing windows, suggest that human observers use center-surround filters to perform the task, and these are subjected to a number of subsequent analyses. When implemented as a scanning linear filter, the classification images appear to capture most of the observer variability in efficiency (r = 0.86). The frequency spectra of the classification images show that frequency weights generally appear bandpass in nature, with peak frequency and bandwidth that vary with statistical properties of the images.

CONCLUSIONS

In these experiments, the classification images appear to capture important features of human-observer performance. Frequency apodization only appears to have a significant effect on performance in the absence of anatomical variability, where the observers appear to underweight low spatial frequencies that have relatively little noise. Frequency weights derived from the classification images generally have a bandpass structure, with adaptation to different conditions seen in the peak frequency and bandwidth. The classification image spectra show relatively modest changes in response to different levels of apodization, with some evidence that observers are attempting to rebalance the apodized spectrum presented to them.

摘要

目的

本研究旨在模拟 X 射线计算机断层扫描(CT)容积的横断面,对具有统计学特征的目标进行强制定位。共考虑了 24 种成像条件,包括两种目标大小、三种背景变化水平和四种频率调制度。该研究的目的是更好地理解人类观察者在具有 CT 统计特性的图像中执行强制定位任务的方式。

方法

采用平移不变传递函数对 CT 系统的传递特性进行建模,同时采用调制度滤波器对高频进行调制。图像中包含噪声,由 ramp-spectrum 分量(模拟 CT 采集噪声的影响)和幂律分量(模拟背景中的正常解剖结构的影响)组成,这两个分量都由调制度滤波器调制。使用两种心理物理学技术来描述观察者的性能:效率分析和分类图像分析。观察者效率量化了观察者执行任务时使用了多少诊断信息,而分类图像则以感知滤波器的形式显示了信息是如何被访问的。

结果

五项研究的心理物理学研究构成了结果的基础。不同条件下观察者效率的范围从 29%到 77%。在均匀背景条件下,观察效率最低,并且发现了调制度的显著影响。使用平滑窗口估计的分类图像表明,人类观察者使用中心环绕滤波器来执行任务,并且对这些滤波器进行了多项后续分析。当作为扫描线性滤波器实现时,分类图像似乎可以捕获观察者效率的大部分可变性(r = 0.86)。分类图像的频率谱表明,频率权重通常呈带通性质,其峰值频率和带宽随图像的统计特性而变化。

结论

在这些实验中,分类图像似乎可以捕获人类观察者性能的重要特征。只有在没有解剖变异性的情况下,调制度才会对性能产生显著影响,在这种情况下,观察者似乎低估了相对噪声较小的低空间频率。从分类图像得出的频率权重通常具有带通结构,在不同条件下会出现峰值频率和带宽的适应。分类图像频谱对不同的调制度变化响应相对较小,有一些证据表明观察者试图重新平衡呈现给他们的调制度频谱。

相似文献

1
Classification images for localization performance in ramp-spectrum noise.
Med Phys. 2018 May;45(5):1970-1984. doi: 10.1002/mp.12857. Epub 2018 Apr 11.
2
Discrimination tasks in simulated low-dose CT noise.
Med Phys. 2023 Jul;50(7):4151-4172. doi: 10.1002/mp.16412. Epub 2023 Apr 14.
3
Human observer templates for lesion discrimination tasks.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11316. doi: 10.1117/12.2549119. Epub 2020 Mar 16.
5
Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability.
J Opt Soc Am A Opt Image Sci Vis. 2001 Mar;18(3):473-88. doi: 10.1364/josaa.18.000473.
6
Observer efficiency in free-localization tasks with correlated noise.
Front Psychol. 2014 May 1;5:345. doi: 10.3389/fpsyg.2014.00345. eCollection 2014.
8
Effects of frequency and bandwidth on diagnostic information transfer in ultrasonic B-mode imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Jun;59(6):1115-26. doi: 10.1109/tuffc.2012.2302.

引用本文的文献

1
Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection.
J Med Imaging (Bellingham). 2024 Jul;11(4):045503. doi: 10.1117/1.JMI.11.4.045503. Epub 2024 Aug 13.
2
Greater benefits of deep learning-based computer-aided detection systems for finding small signals in 3D volumetric medical images.
J Med Imaging (Bellingham). 2024 Jul;11(4):045501. doi: 10.1117/1.JMI.11.4.045501. Epub 2024 Jul 9.
4
Discrimination tasks in simulated low-dose CT noise.
Med Phys. 2023 Jul;50(7):4151-4172. doi: 10.1002/mp.16412. Epub 2023 Apr 14.
5
A 2D Synthesized Image Improves the 3D Search for Foveated Visual Systems.
IEEE Trans Med Imaging. 2023 Aug;42(8):2176-2188. doi: 10.1109/TMI.2023.3246005. Epub 2023 Aug 1.
6
A minimum SNR criterion for computed tomography object detection in the projection domain.
Med Phys. 2022 Aug;49(8):4988-4998. doi: 10.1002/mp.15832. Epub 2022 Jul 10.
7
Medical image quality metrics for foveated model observers.
J Med Imaging (Bellingham). 2021 Jul;8(4):041209. doi: 10.1117/1.JMI.8.4.041209. Epub 2021 Aug 16.
8
Comparative observer effects in 2D and 3D localization tasks.
J Med Imaging (Bellingham). 2021 Jul;8(4):041206. doi: 10.1117/1.JMI.8.4.041206. Epub 2021 Mar 18.
9
Deep Learning Based Model Observer by U-Net.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11316. doi: 10.1117/12.2549687. Epub 2020 Mar 16.
10
Human observer templates for lesion discrimination tasks.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11316. doi: 10.1117/12.2549119. Epub 2020 Mar 16.

本文引用的文献

1
Observer efficiency in free-localization tasks with correlated noise.
Front Psychol. 2014 May 1;5:345. doi: 10.3389/fpsyg.2014.00345. eCollection 2014.
3
Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities.
Phys Med Biol. 2013 Mar 21;58(6):1663-81. doi: 10.1088/0031-9155/58/6/1663. Epub 2013 Feb 19.
4
On the choice of acceptance radius in free-response observer performance studies.
Br J Radiol. 2013 Jan;86(1021):42313554. doi: 10.1259/bjr/42313554. Epub 2012 May 9.
6
Channelized Hotelling observers for the assessment of volumetric imaging data sets.
J Opt Soc Am A Opt Image Sci Vis. 2011 Jun 1;28(6):1145-63. doi: 10.1364/JOSAA.28.001145.
7
Classification images: A review.
J Vis. 2011 May 2;11(5):2. doi: 10.1167/11.5.2.
8
The efficiency of the human observer for lesion detection and localization in emission tomography.
Phys Med Biol. 2009 May 7;54(9):2651-66. doi: 10.1088/0031-9155/54/9/004. Epub 2009 Apr 8.
9
Characterizing anatomical variability in breast CT images.
Med Phys. 2008 Oct;35(10):4685-94. doi: 10.1118/1.2977772.
10
Evaluation of Multiclass Model Observers in PET LROC Studies.
IEEE Trans Nucl Sci. 2007;54:116-123. doi: 10.1109/TNS.2006.889163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验