Suppr超能文献

模拟低剂量 CT 噪声中的判别任务。

Discrimination tasks in simulated low-dose CT noise.

机构信息

Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, USA.

Division of Imaging, Diagnostics and Software Reliability, US Food and Drug Administration, Silver Spring, Maryland, USA.

出版信息

Med Phys. 2023 Jul;50(7):4151-4172. doi: 10.1002/mp.16412. Epub 2023 Apr 14.

Abstract

BACKGROUND

This study reports the results of a set of discrimination experiments using simulated images that represent the appearance of subtle lesions in low-dose computed tomography (CT) of the lungs. Noise in these images has a characteristic ramp-spectrum before apodization by noise control filters. We consider three specific diagnostic features that determine whether a lesion is considered malignant or benign, two system-resolution levels, and four apodization levels for a total of 24 experimental conditions.

PURPOSE

The goal of the investigation is to better understand how well human observers perform subtle discrimination tasks like these, and the mechanisms of that performance. We use a forced-choice psychophysical paradigm to estimate observer efficiency and classification images. These measures quantify how effectively subjects can read the images, and how they use images to perform discrimination tasks across the different imaging conditions.

MATERIALS AND METHODS

The simulated CT images used as stimuli in the psychophysical experiments are generated from high-resolution objects passed through a modulation transfer function (MTF) before down-sampling to the image-pixel grid. Acquisition noise is then added with a ramp noise-power spectrum (NPS), with subsequent smoothing through apodization filters. The features considered are lesion size, indistinct lesion boundary, and a nonuniform lesion interior. System resolution is implemented by an MTF with resolution (10% max.) of 0.47 or 0.58 cyc/mm. Apodization is implemented by a Shepp-Logan filter (Sinc profile) with various cutoffs. Six medically naïve subjects participated in the psychophysical studies, entailing training and testing components for each condition. Training consisted of staircase procedures to find the 80% correct threshold for each subject, and testing involved 2000 psychophysical trials at the threshold value for each subject. Human-observer performance is compared to the Ideal Observer to generate estimates of task efficiency. The significance of imaging factors is assessed using ANOVA. Classification images are used to estimate the linear template weights used by subjects to perform these tasks. Classification-image spectra are used to analyze subject weights in the spatial-frequency domain.

RESULTS

Overall, average observer efficiency is relatively low in these experiments (10%-40%) relative to detection and localization studies reported previously. We find significant effects for feature type and apodization level on observer efficiency. Somewhat surprisingly, system resolution is not a significant factor. Efficiency effects of the different features appear to be well explained by the profile of the linear templates in the classification images. Increasingly strong apodization is found to both increase the classification-image weights and to increase the mean-frequency of the classification-image spectra. A secondary analysis of "Unapodized" classification images shows that this is largely due to observers undoing (inverting) the effects of apodization filters.

CONCLUSIONS

These studies demonstrate that human observers can be relatively inefficient at feature-discrimination tasks in ramp-spectrum noise. Observers appear to be adapting to frequency suppression implemented in apodization filters, but there are residual effects that are not explained by spatial weighting patterns. The studies also suggest that the mechanisms for improving performance through the application of noise-control filters may require further investigation.

摘要

背景

本研究报告了一组使用模拟图像进行的判别实验结果,这些模拟图像代表了低剂量计算机断层扫描(CT)肺部细微病变的外观。这些图像中的噪声在通过噪声控制滤波器进行频域处理之前具有特征性的斜坡谱。我们考虑了三个确定病变是否为恶性或良性的特定诊断特征、两个系统分辨率级别和四个频域处理级别,共计 24 种实验条件。

目的

该研究的目的是更好地了解人类观察者在这些细微判别任务中的表现以及表现的机制。我们使用强制选择心理物理范式来估计观察者效率和分类图像。这些措施量化了受试者读取图像的有效性,以及他们如何在不同成像条件下使用图像进行判别任务。

材料与方法

用于心理物理实验的模拟 CT 图像是通过调制传递函数(MTF)对高分辨率物体进行处理后,经过下采样到图像像素网格生成的。然后添加具有斜坡噪声功率谱(NPS)的采集噪声,并通过频域处理滤波器进行平滑处理。所考虑的特征包括病变大小、不明显的病变边界和不均匀的病变内部。系统分辨率通过具有 0.47 或 0.58 cyc/mm 的分辨率(10% max.)的 MTF 实现。频域处理通过具有各种截止值的 Shepp-Logan 滤波器(Sinc 轮廓)实现。六名医学上无知的受试者参加了心理物理学研究,每个条件都包括培训和测试部分。培训包括为每个受试者找到 80%正确阈值的阶梯程序,测试涉及每个受试者阈值处的 2000 次心理物理试验。将人类观察者的性能与理想观察者进行比较,以生成任务效率的估计值。使用方差分析评估成像因素的显著性。使用分类图像估计受试者执行这些任务时使用的线性模板权重。分类图像谱用于分析受试者在空间频率域中的权重。

结果

总体而言,与之前报道的检测和定位研究相比,这些实验中观察者的平均效率相对较低(10%-40%)。我们发现特征类型和频域处理级别对观察者效率有显著影响。令人惊讶的是,系统分辨率不是一个重要因素。不同特征的效率效应似乎很好地解释了分类图像中线性模板的轮廓。我们发现,随着频域处理的增强,分类图像权重增加,分类图像谱的平均频率也增加。对“未频域处理”分类图像的二次分析表明,这主要是由于观察者消除(反转)了频域处理滤波器的影响。

结论

这些研究表明,人类观察者在斜坡谱噪声中的特征判别任务中可能效率相对较低。观察者似乎正在适应频域处理滤波器中实现的频率抑制,但仍存在无法通过空间加权模式解释的残留效应。这些研究还表明,通过应用噪声控制滤波器来提高性能的机制可能需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/11181787/c7fd4f54d956/nihms-1997213-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验