State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2018 Apr;30(16):e1707170. doi: 10.1002/adma.201707170. Epub 2018 Mar 13.
Besides broadening of the absorption spectrum, modulating molecular energy levels, and other well-studied properties, a stronger intramolecular electron push-pull effect also affords other advantages in nonfullerene acceptors. A strong push-pull effect improves the dipole moment of the wings in IT-4F over IT-M and results in a lower miscibility than IT-M when blended with PBDB-TF. This feature leads to higher domain purity in the PBDB-TF:IT-4F blend and makes a contribution to the better photovoltaic performance. Moreover, the strong push-pull effect also decreases the vibrational relaxation, which makes IT-4F more promising than IT-M in reducing the energetic loss of organic solar cells. Above all, a power conversion efficiency of 13.7% is recorded in PBDB-TF:IT-4F-based devices.
除了拓宽吸收光谱、调节分子能级等研究充分的性质外,更强的分子内电子推拉效应也为非富勒烯受体带来了其他优势。推拉效应越强,IT-4F 的两翼的偶极矩就越大,与 PBDB-TF 共混时的混溶性就比 IT-M 差。这一特点使得 PBDB-TF:IT-4F 共混物中的畴纯度更高,从而提高了光伏性能。此外,推拉效应越强,振动弛豫越小,这使得 IT-4F 在降低有机太阳能电池的能量损失方面比 IT-M 更有前景。最重要的是,基于 PBDB-TF:IT-4F 的器件记录到了 13.7%的功率转换效率。