Liu Yuan, Ojamäe Lars
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Department of Chemistry, IFM, Linköping University, SE-58 183 Linköping, Sweden.
Phys Chem Chem Phys. 2018 Mar 28;20(12):8333-8340. doi: 10.1039/c8cp00699g. Epub 2018 Mar 13.
In contrast to the rich knowledge of water and 17 experimentally confirmed crystalline phases of solid water under positive pressures, water under negative pressure has been poorly explored. In this study, a new crystalline phase of ice with ultralow density (0.6 g cm), named "clathrate ice sL", is constructed by nano water cage clusters, and it is predicted to be stable under a lower negative pressure than the experimentally confirmed sII phase by first-principles phase diagram computations, thereby extending the phase diagram of water to negative pressure regions below -5170 bar at 0 K and below -4761 bar at 300 K. In addition, according to our theoretical prediction, the optimal hydrogen storage mass density in the new clathrate ice sL is 7.7 wt% (larger than the 2017 DOE target of 5.5 wt%), which would set a new record of hydrogen storage capacity in clathrate hydrates. The finding of clathrate ice sL not only proposes a new type of crystalline ice under negative pressure but also explores the potential applications of the ultralow density ice phases while extending the water phase diagram and enriching the knowledge of people about water.
与在正压下关于水的丰富知识以及17种经实验证实的固态水结晶相相比,负压下的水却鲜有研究。在本研究中,一种具有超低密度(0.6 g/cm³)的新型冰结晶相,名为“笼形冰sL”,由纳米水笼簇构建而成,并且通过第一性原理相图计算预测其在比实验证实的sII相更低的负压下稳定,从而将水的相图扩展到0 K时低于 -5170 bar以及300 K时低于 -4761 bar的负压区域。此外,根据我们的理论预测,新型笼形冰sL中的最佳储氢质量密度为7.7 wt%(大于2017年美国能源部设定的5.5 wt%的目标),这将创造笼形水合物储氢容量的新纪录。笼形冰sL的发现不仅提出了一种新型的负压下的结晶冰,还探索了超低密度冰相的潜在应用,同时扩展了水的相图并丰富了人们对水的认识。