Talewar Sukhpreet K, Pardo Luis Carlos, Headen Thomas F, Halukeerthi Siriney O, Chikani Bharvi, Rosu-Finsen Alexander, Salzmann Christoph G
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
Grup de Caracterització de Materials, Departament de Física, EEBE, Universitat Politècnica de Catalunya, and Barcelona Research Center in Multiscale Science and Engineering, C/Eduard Maristany 10, E-08019 Barcelona, Spain.
Faraday Discuss. 2024 Feb 6;249(0):69-83. doi: 10.1039/d3fd00102d.
Hydrophobic molecules are by definition difficult to hydrate. Previous studies in the area of hydrophobic hydration have therefore often relied on using amphiphilic molecules where the hydrophilic part of a molecule enabled the solubility in liquid water. Here, we show that the hydrophobic adamantane (CH) molecule can be fully hydrated through vapour codeposition with water onto a cryogenic substrate at 80 K resulting in the matrix isolation of adamantane in amorphous ice. Using neutron diffraction in combination with the isotopic substitution method and the empirical potential structure refinement technique, we find that the first hydration shell of adamantane is well structured consisting of a hydrogen-bonded cage of 28 water molecules that is also found in cubic structure II clathrate hydrates. The four hexagonal faces of the 56 cage are situated above the four methine (CH) groups of adamantane whereas the methylene (CH) groups are positioned below the edges of two adjoining pentagonal faces. The oxygen atoms of the 28 water molecules can be categorised on the basis of symmetry equivalences as twelve A, twelve B and four C oxygens. The water molecules of the first hydration shell display orientations consistent with those expected for a clathrate-hydrate-type cage, but also unfavourable ones with respect to the hydrogen bonding between the water molecules. Annealing the samples at 140 K, which is just below the crystallisation temperature of the matrix, removes the unfavourable orientations and leads to a slight increase in the structural order of the first hydration shell. The very closest water molecules display a tendency for their dipole moments to point towards the adamantane which is attributed to steric effects. Other than this, no significant polarisation effects are observed which is consistent with weak interactions between adamantane and the amorphous ice matrix. FT-IR spectroscopy shows that the incorporation of adamantane into amorphous ice leads to a weakening of the hydrogen bonds. In summary, the matrix-isolation of the highly symmetric adamantane in amorphous ice provides an interesting test case for hydrophobic hydration. Studying the structure and spectroscopic properties of water at the interface with hydrophobic hydrocarbons is also relevant for astrophysical environments, such as comets or the interstellar medium, where amorphous ice and hydrocarbons have been shown to coexist in large quantities.
根据定义,疏水分子难以水合。因此,以往在疏水水合领域的研究常常依赖于使用两亲分子,其中分子的亲水部分使其能够溶解于液态水中。在此,我们表明,疏水性金刚烷(C₁₀H₁₆)分子可以通过与水在80 K的低温衬底上进行气相共沉积而完全水合,从而在非晶冰中实现金刚烷的基质隔离。结合中子衍射、同位素取代法和经验势结构精修技术,我们发现金刚烷的第一水合层结构良好,由28个水分子构成的氢键笼组成,这种结构也存在于立方结构II型笼形水合物中。56面体笼的四个六边形面位于金刚烷的四个次甲基(CH)基团上方,而亚甲基(CH₂)基团则位于两个相邻五边形面的边缘下方。28个水分子的氧原子可根据对称等价性分为12个A氧、12个B氧和4个C氧。第一水合层的水分子显示出与笼形水合物型笼预期一致的取向,但相对于水分子之间的氢键也存在不利取向。在刚好低于基质结晶温度的140 K下对样品进行退火处理,消除了不利取向,并导致第一水合层的结构有序度略有增加。距离最近的水分子显示出其偶极矩有指向金刚烷的趋势,这归因于空间效应。除此之外,未观察到明显的极化效应,这与金刚烷和非晶冰基质之间的弱相互作用一致。傅里叶变换红外光谱表明,金刚烷掺入非晶冰会导致氢键减弱。总之,高度对称的金刚烷在非晶冰中的基质隔离为疏水水合提供了一个有趣的测试案例。研究与疏水碳氢化合物界面处水的结构和光谱性质对于天体物理环境也很重要,例如彗星或星际介质,在这些环境中已证明非晶冰和碳氢化合物大量共存。