Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark.
Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile ; Laboratory of Exercise Sciences, Clínica MEDS, Santiago , Chile.
Am J Physiol Endocrinol Metab. 2018 Jul 1;315(1):E110-E125. doi: 10.1152/ajpendo.00392.2017. Epub 2018 Mar 13.
Studies in skeletal muscle cell cultures suggest that the cortical actin cytoskeleton is a major requirement for insulin-stimulated glucose transport, implicating the β-actin isoform, which in many cell types is the main actin isoform. However, it is not clear that β-actin plays such a role in mature skeletal muscle. Neither dependency of glucose transport on β-actin nor actin reorganization upon glucose transport have been tested in mature muscle. To investigate the role of β-actin in fully differentiated muscle, we performed a detailed characterization of wild type and muscle-specific β-actin knockout (KO) mice. The effects of the β-actin KO were subtle; however, we confirmed the previously reported decline in running performance of β-actin KO mice compared with wild type during repeated maximal running tests. We also found insulin-stimulated glucose transport into incubated muscles reduced in soleus but not in extensor digitorum longus muscle of young adult mice. Contraction-stimulated glucose transport trended toward the same pattern, but the glucose transport phenotype disappeared in soleus muscles from mature adult mice. No genotype-related differences were found in body composition or glucose tolerance or by indirect calorimetry measurements. To evaluate β-actin mobility in mature muscle, we electroporated green fluorescent protein (GFP)-β-actin into flexor digitorum brevis muscle fibers and measured fluorescence recovery after photobleaching. GFP-β-actin showed limited unstimulated mobility and no changes after insulin stimulation. In conclusion, β-actin is not required for glucose transport regulation in mature mouse muscle under the majority of the tested conditions. Thus, our work reveals fundamental differences in the role of the cortical β-actin cytoskeleton in mature muscle compared with cell culture.
骨骼肌细胞培养研究表明,皮质肌动蛋白细胞骨架是胰岛素刺激葡萄糖转运的主要要求,这暗示了β-肌动蛋白同工型在许多细胞类型中是主要的肌动蛋白同工型。然而,β-肌动蛋白在成熟骨骼肌中是否发挥这样的作用尚不清楚。尚未在成熟肌肉中测试葡萄糖转运对β-肌动蛋白的依赖性或葡萄糖转运后肌动蛋白的重组。为了研究β-肌动蛋白在完全分化的肌肉中的作用,我们对野生型和肌肉特异性β-肌动蛋白敲除(KO)小鼠进行了详细的特征描述。β-肌动蛋白 KO 的影响很细微;然而,我们证实了之前报道的β-肌动蛋白 KO 小鼠在重复最大跑步测试中的跑步性能下降,与野生型相比。我们还发现,在年轻成年小鼠的比目鱼肌中,胰岛素刺激的葡萄糖转运减少,但在伸趾长肌中则没有。收缩刺激的葡萄糖转运也呈现出相同的模式,但在成熟成年小鼠的比目鱼肌中,葡萄糖转运表型消失。在体成分、葡萄糖耐量或间接测热法测量中,没有发现基因型相关的差异。为了评估成熟肌肉中β-肌动蛋白的流动性,我们将绿色荧光蛋白(GFP)-β-肌动蛋白电穿孔到屈趾短肌纤维中,并测量光漂白后的荧光恢复。GFP-β-肌动蛋白显示出有限的非刺激流动性,并且在胰岛素刺激后没有变化。总之,在大多数测试条件下,β-肌动蛋白不是成熟小鼠肌肉葡萄糖转运调节所必需的。因此,我们的工作揭示了成熟肌肉中皮质β-肌动蛋白细胞骨架的作用与细胞培养相比存在根本差异。