Southern Regional Research Center, USDA, New Orleans, LA 70124, USA.
University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria.
Int J Mol Sci. 2018 Mar 13;19(3):840. doi: 10.3390/ijms19030840.
Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis-Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity () of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (/), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.
纳米纤维素具有高比表面积、水合性质和易于衍生化的特点,可用于制备蛋白酶传感器。本文设计了一种基于纳米纤维素气凝胶换能器表面的人中性粒细胞弹性蛋白酶传感器,与棉纤维滤纸和纳米纤维素晶须版本的传感器进行了比较。采用 X 射线晶体学、米氏酶动力学和圆二色性对比了肽-纤维素缀合物构象与酶/底物结合和周转率的结构/功能关系。纳米纤维素气凝胶具有纤维素 II 结构。根据观察到的酶动力学,讨论了微晶表面与肽-纤维素构象的时空关系。与基于溶液的弹性蛋白酶底物相比,纳米纤维素气凝胶和纳米纤维素晶须肽缀合物对弹性蛋白酶表现出更高的底物结合亲和力()。纳米纤维素气凝胶传感器的观察到的增加导致更高的酶效率(/),这归因于丝氨酸蛋白酶与带负电荷的纤维素表面的结合。微晶尺寸和β-转角肽构象的影响与肽-纤维素动力学有关。在纤维素晶体表面展示纤维素对肽 O6-羟甲基旋转异构体取向的模型表明,肽-纤维素缀合物对酶活性位点结合的相对可及性。