Suppr超能文献

鉴定透明细胞肾细胞癌的生物标志物和潜在的分子机制。

Identification of biomarkers and potential molecular mechanisms of clear cell renal cell carcinoma.

出版信息

Neoplasma. 2018;65(2):242-252. doi: 10.4149/neo_2018_170511N342.

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer in adults. The aim of this study is to identify the biomarkers and potential molecular mechanisms of ccRCC. Three gene expression profiles and two miRNA expression profiles were downloaded from GEO database. A total of 330 up-regulated differentially expressed genes (DEGs), 545 down-regulated DEGs, 26 up-regulated differentially expressed miRNAs (DEMs) and 11 down-regulated DEMs were identified by GEO2R. The gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by KOBAS software. The results showed that GO terms of the up-regulated DEGs were mostly enriched in response to stimulus at BP level, cell periphery at CC level and binding at MF level, while the GO terms of down-regulated DEGs were enriched in single-organism process at BP level, extracellular exosome at CC level and catalytic activity at MF level. As for KEGG pathways, HIF-1 signaling pathway, focal adhesion, PI3K-Akt signaling pathway and metabolic pathways were significantly enriched. Then, protein-protein interaction (PPI) network and miRNA-gene network were constructed and analyzed by Cytoscape. A total of eight DEGs were identified as biomarkers, including VEGFA, PPARA, CCND1, FLT1, CXCL12, FN1, DCN and ERBB4. Expression validation and survival analysis were performed by GEPIA and OncoLnc, respectively. Four biomarkers were verified by quantitative real-time PCR (qPCR) in 786-O cell line and HK-2 cell line. All four genes had the same expression trend as predicted. Our study provides a series of biomarkers and molecular mechanisms for the deeper research of ccRCC.

摘要

透明细胞肾细胞癌 (ccRCC) 是成人中最常见的肾癌类型。本研究旨在鉴定 ccRCC 的生物标志物和潜在分子机制。从 GEO 数据库中下载了三个基因表达谱和两个 miRNA 表达谱。通过 GEO2R 鉴定出 330 个上调差异表达基因 (DEGs)、545 个下调 DEGs、26 个上调差异表达 miRNA (DEM) 和 11 个下调 DEM。通过 KOBAS 软件进行基因本体 (GO) 富集和京都基因与基因组百科全书 (KEGG) 通路分析。结果表明,上调 DEGs 的 GO 术语主要富集在 BP 水平的对刺激的反应、CC 水平的细胞外围和 MF 水平的结合,而下调 DEGs 的 GO 术语富集在 BP 水平的单一生物体过程、CC 水平的细胞外外泌体和 MF 水平的催化活性。对于 KEGG 通路,HIF-1 信号通路、焦点黏附、PI3K-Akt 信号通路和代谢途径显著富集。然后,通过 Cytoscape 构建和分析蛋白质-蛋白质相互作用 (PPI) 网络和 miRNA-基因网络。共鉴定出 8 个 DEG 作为生物标志物,包括 VEGFA、PPARA、CCND1、FLT1、CXCL12、FN1、DCN 和 ERBB4。通过 GEPIA 和 OncoLnc 分别进行表达验证和生存分析。在 786-O 细胞系和 HK-2 细胞系中通过定量实时 PCR (qPCR) 验证了 4 个生物标志物。所有四个基因的表达趋势与预测一致。本研究为 ccRCC 的深入研究提供了一系列生物标志物和分子机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验