Suppr超能文献

由于伪垂直传播,泛热带引入的树会被特定的外生菌根共生体所跟随。

A pantropically introduced tree is followed by specific ectomycorrhizal symbionts due to pseudo-vertical transmission.

机构信息

LMI-LAPSE/Laboratoire Commun de Microbiologie, IRD/UCAD/ISRA, BP 1386, Dakar, Senegal.

Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France.

出版信息

ISME J. 2018 Jun;12(7):1806-1816. doi: 10.1038/s41396-018-0088-y. Epub 2018 Mar 13.

Abstract

Global trade increases plant introductions, but joint introduction of associated microbes is overlooked. We analyzed the ectomycorrhizal fungi of a Caribbean beach tree, seagrape (Coccoloba uvifera, Polygonacaeae), introduced pantropically to stabilize coastal soils and produce edible fruits. Seagrape displays a limited symbiont diversity in the Caribbean. In five regions of introduction (Brazil, Japan, Malaysia, Réunion and Senegal), molecular barcoding showed that seagrape mostly or exclusively associates with Scleroderma species (Basidiomycota) that were hitherto only known from Caribbean seagrape stands. An unknown Scleroderma species dominates in Brazil, Japan and Malaysia, while Scleroderma bermudense exclusively occurs in Réunion and Senegal. Population genetics analysis of S. bermudense did not detect any demographic bottleneck associated with a possible founder effect, but fungal populations from regions where seagrape is introduced are little differentiated from the Caribbean ones, separated by thousands of kilometers, consistently with relatively recent introduction. Moreover, dry seagrape fruits carry Scleroderma spores, probably because, when drying on beach sand, they aggregate spores from the spore bank accumulated by semi-hypogeous Scleroderma sporocarps. Aggregated spores inoculate seedlings, and their abundance may limit the founder effect after seagrape introduction. This rare pseudo-vertical transmission of mycorrhizal fungi likely contributed to efficient and repeated seagrape/Scleroderma co-introductions.

摘要

全球贸易增加了植物的引种,但共生微生物的共同引种却被忽视了。我们分析了加勒比海滩树种海桐(Coccoloba uvifera,Polygonacaeae)的外生菌根真菌,这种树种被引入世界各地以稳定沿海土壤并生产可食用的果实。海桐在加勒比地区的共生体多样性有限。在五个引种区(巴西、日本、马来西亚、留尼汪和塞内加尔),分子条码显示,海桐主要或仅与 hitherto 仅在加勒比海桐林中发现的 Scleroderma 物种(担子菌门)共生。一种未知的 Scleroderma 物种在巴西、日本和马来西亚占主导地位,而 Scleroderma bermudense 则仅在留尼汪和塞内加尔出现。对 S. bermudense 的种群遗传学分析没有检测到与可能的奠基者效应相关的任何人口瓶颈,但与几千公里外的加勒比种群相比,引入海桐的地区的真菌种群分化很小,这与相对较近的引入一致。此外,干燥的海桐果实携带 Scleroderma 孢子,这可能是因为当它们在海滩沙上干燥时,会聚集由半地下的 Scleroderma 子实体积累的孢子库中的孢子。聚集的孢子接种幼苗,其丰度可能限制海桐引种后的奠基者效应。这种外生菌根真菌的罕见拟垂直传播可能有助于海桐与 Scleroderma 的高效和重复共同引种。

相似文献

1
A pantropically introduced tree is followed by specific ectomycorrhizal symbionts due to pseudo-vertical transmission.
ISME J. 2018 Jun;12(7):1806-1816. doi: 10.1038/s41396-018-0088-y. Epub 2018 Mar 13.
4
The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings.
Mycorrhiza. 2006 Nov;16(8):559-565. doi: 10.1007/s00572-006-0073-6. Epub 2006 Oct 11.
5
6
Ectomycorrhizal symbiosis of tropical African trees.
Mycorrhiza. 2012 Jan;22(1):1-29. doi: 10.1007/s00572-011-0415-x. Epub 2011 Oct 12.
7
The species of Scleroderma from Argentina, including a new species from the Nothofagus forest.
Mycologia. 2012 Mar-Apr;104(2):488-95. doi: 10.3852/11-082. Epub 2011 Nov 10.
9
Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests.
Mycorrhiza. 2018 Jan;28(1):49-58. doi: 10.1007/s00572-017-0800-1. Epub 2017 Sep 23.
10
Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs.
Mycologia. 2005 Jul-Aug;97(4):762-9. doi: 10.3852/mycologia.97.4.762.

引用本文的文献

2
Seed or soil: Tracing back the plant mycobiota primary sources.
Environ Microbiol Rep. 2024 Jun;16(3):e13301. doi: 10.1111/1758-2229.13301.
4
A Closer Examination of the 'Abundant-Center' for Ectomycorrhizal Fungal Community Associated With in China.
Front Plant Sci. 2022 Feb 24;13:759801. doi: 10.3389/fpls.2022.759801. eCollection 2022.
6
Biogeographic Patterns of Ectomycorrhizal Fungal Communities Associated With Across the Japanese Archipelago.
Front Microbiol. 2019 Nov 14;10:2656. doi: 10.3389/fmicb.2019.02656. eCollection 2019.
7
Soil spore bank in Tuber melanosporum: up to 42% of fruitbodies remain unremoved in managed truffle grounds.
Mycorrhiza. 2019 Nov;29(6):663-668. doi: 10.1007/s00572-019-00912-3. Epub 2019 Nov 7.
8
sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus .
MycoKeys. 2019 Mar 29;49:73-97. doi: 10.3897/mycokeys.49.33185. eCollection 2019.
9
A Hypothetical Bottleneck in the Plant Microbiome.
Front Microbiol. 2018 Jul 31;9:1645. doi: 10.3389/fmicb.2018.01645. eCollection 2018.

本文引用的文献

2
The emerging science of linked plant-fungal invasions.
New Phytol. 2017 Sep;215(4):1314-1332. doi: 10.1111/nph.14657. Epub 2017 Jun 26.
3
ISOLATION BY DISTANCE IN EQUILIBRIUM AND NON-EQUILIBRIUM POPULATIONS.
Evolution. 1993 Feb;47(1):264-279. doi: 10.1111/j.1558-5646.1993.tb01215.x.
5
Impact of alien pines on local arbuscular mycorrhizal fungal communities-evidence from two continents.
FEMS Microbiol Ecol. 2016 Jun;92(6):fiw073. doi: 10.1093/femsec/fiw073. Epub 2016 Apr 6.
6
Holes in the Hologenome: Why Host-Microbe Symbioses Are Not Holobionts.
mBio. 2016 Mar 31;7(2):e02099. doi: 10.1128/mBio.02099-15.
7
Mycorrhizal co-invasion and novel interactions depend on neighborhood context.
Ecology. 2015 Sep;96(9):2336-47. doi: 10.1890/14-2361.1.
8
Microbial invasions: the process, patterns, and mechanisms.
Trends Microbiol. 2015 Nov;23(11):719-729. doi: 10.1016/j.tim.2015.07.013. Epub 2015 Oct 1.
9
A single ectomycorrhizal fungal species can enable a Pinus invasion.
Ecology. 2015 May;96(5):1438-44. doi: 10.1890/14-1100.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验