文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

功能化介孔硅纳米颗粒靶向递送抗 miR-155 用于结直肠癌治疗。

Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy.

机构信息

Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China.

Department of Emergency, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China.

出版信息

Int J Nanomedicine. 2018 Mar 1;13:1241-1256. doi: 10.2147/IJN.S158290. eCollection 2018.


DOI:10.2147/IJN.S158290
PMID:29535520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5841950/
Abstract

INTRODUCTION: MicroRNA-155 (miR-155) is an oncogenic microRNA, which is upregulated in many human cancers including colorectal cancer (CRC). Overexpression of miR-155 has been found to regulate several cancer-related pathways, and therefore, targeting miR-155 may be an effective strategy for cancer therapy. However, effective and safe delivery of anti-miR-155 to tumors remains challenging for the clinical applications of anti-miR-155-based therapeutics. METHODS: In this study, we explored the expression of miR-155 and the transcription factor nuclear factor kappa B (NF-κB) in CRC tissues and cell lines, and the possible relationship between miR-155 and NF-κB. We further report on anti-miR-155-loaded mesoporous silica nanoparticles (MSNs) modified with polymerized dopamine (PDA) and AS1411 aptamer (MSNs-anti-miR-155@PDA-Apt) for the targeted treatment of CRC. RESULTS: Results showed that miR-155 is overexpressed in CRC tissues and cell lines, and there is a positive feedback loop between NF-κB and miR-155. Compared to the control groups, MSNs-anti-miR-155@PDA-Apt could efficiently downregulate miR-155 expression in SW480 cells and achieve significantly high targeting efficiency and enhanced therapeutic effects in both in vivo and in vitro experiments. Furthermore, inhibition of miR-155 by MSNs-anti-miR-155@PDA-Apt can enhance the sensitivity of SW480 to 5-fluorouracil chemotherapy. CONCLUSION: Thus, our results suggested that MSNs-anti-miR-155@PDA-Apt is a promising nanoformulation for CRC treatment.

摘要

简介:微小 RNA-155(miR-155)是一种致癌微小 RNA,在包括结直肠癌(CRC)在内的许多人类癌症中上调。miR-155 的过表达已被发现调节几种与癌症相关的途径,因此,靶向 miR-155 可能是癌症治疗的有效策略。然而,miR-155 的有效和安全递送到肿瘤对于基于 miR-155 的治疗剂的临床应用仍然具有挑战性。

方法:在这项研究中,我们探索了 miR-155 和转录因子核因子 kappa B(NF-κB)在 CRC 组织和细胞系中的表达,以及 miR-155 和 NF-κB 之间的可能关系。我们进一步报告了载有抗 miR-155 的介孔硅纳米粒子(MSNs),其用聚合多巴胺(PDA)和 AS1411 适体(MSNs-anti-miR-155@PDA-Apt)进行修饰,用于 CRC 的靶向治疗。

结果:结果表明,miR-155 在 CRC 组织和细胞系中过度表达,并且 NF-κB 和 miR-155 之间存在正反馈回路。与对照组相比,MSNs-anti-miR-155@PDA-Apt 能够在 SW480 细胞中有效地下调 miR-155 的表达,并在体内和体外实验中实现显著的高靶向效率和增强的治疗效果。此外,MSNs-anti-miR-155@PDA-Apt 通过抑制 miR-155 可以增强 SW480 对 5-氟尿嘧啶化疗的敏感性。

结论:因此,我们的结果表明,MSNs-anti-miR-155@PDA-Apt 是治疗 CRC 的一种有前途的纳米制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/6130d4b1f74a/ijn-13-1241Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/22859c0fee4e/ijn-13-1241Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/e4f4a751bd24/ijn-13-1241Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/5b10f03c1901/ijn-13-1241Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/4451e9553e3f/ijn-13-1241Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/971adf4aea64/ijn-13-1241Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/cfa10fe86b73/ijn-13-1241Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/b9aa84a6e626/ijn-13-1241Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/feb8489c1c9c/ijn-13-1241Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/57e260b29434/ijn-13-1241Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/6130d4b1f74a/ijn-13-1241Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/22859c0fee4e/ijn-13-1241Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/e4f4a751bd24/ijn-13-1241Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/5b10f03c1901/ijn-13-1241Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/4451e9553e3f/ijn-13-1241Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/971adf4aea64/ijn-13-1241Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/cfa10fe86b73/ijn-13-1241Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/b9aa84a6e626/ijn-13-1241Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/feb8489c1c9c/ijn-13-1241Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/57e260b29434/ijn-13-1241Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/5841950/6130d4b1f74a/ijn-13-1241Fig10.jpg

相似文献

[1]
Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy.

Int J Nanomedicine. 2018-3-1

[2]
EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer.

Int J Nanomedicine. 2017-8-26

[3]
Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts.

Theranostics. 2021

[4]
Enhanced theranostic efficacy of epirubicin-loaded SPION@MSN through co-delivery of an anti-miR-21-expressing plasmid and ZIF-8 hybridization to target colon adenocarcinoma.

Nanoscale. 2024-3-21

[5]
Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy.

Nanomedicine (Lond). 2018-7-1

[6]
A microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFκB and STAT3 in colorectal cancer cells.

Gastroenterology. 2014-10

[7]
Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer.

J Cell Physiol. 2020-10

[8]
Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy.

J Colloid Interface Sci. 2016-2-1

[9]
Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma.

Int J Nanomedicine. 2017-7-24

[10]
Syndecan-2, negatively regulated by miR-20b-5p, contributes to 5-fluorouracil resistance of colorectal cancer cells via the JNK/ERK signaling pathway.

Acta Biochim Biophys Sin (Shanghai). 2021-11-10

引用本文的文献

[1]
The Pivotal Role of NF-κB in Glioblastoma: Mechanisms of Activation and Therapeutic Implications.

Int J Mol Sci. 2025-8-15

[2]
CD8 + T Cells in Gastrointestinal Cancer: a Perspective on Targeting MicroRNA.

J Mol Med (Berl). 2025-7-17

[3]
Diagnostic and Therapeutic Potential of Selected microRNAs in Colorectal Cancer: A Literature Review.

Cancers (Basel). 2025-6-25

[4]
CTHRC1: a key player in colorectal cancer progression and immune evasion.

Front Immunol. 2025-3-25

[5]
Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis.

Front Oncol. 2024-12-6

[6]
Recent Advances and Prospects of Nucleic Acid Therapeutics for Anti-Cancer Therapy.

Molecules. 2024-10-7

[7]
MicroRNA-155 and its exosomal form: Small pieces in the gastrointestinal cancers puzzle.

Cell Biol Toxicol. 2024-9-16

[8]
Silica nanoparticle design for colorectal cancer treatment: Recent progress and clinical potential.

World J Clin Oncol. 2024-6-24

[9]
Analysis of the differential expression of serum miR-21-5p, miR-135-5p, and miR-155-5p by Bifidobacterium triplex viable capsules during the perioperative stage of colorectal cancer.

Int J Colorectal Dis. 2024-4-7

[10]
Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations.

Int J Mol Sci. 2023-3-28

本文引用的文献

[1]
Stable, polyvalent aptamer-conjugated near-infrared fluorescent nanocomposite for high-performance cancer cell-targeted imaging and therapy.

J Mater Chem B. 2017-12-14

[2]
A highly selective dual-therapeutic nanosystem for simultaneous anticancer and antiangiogenesis therapy.

J Mater Chem B. 2017-11-7

[3]
Antibody-conjugated mesoporous silica nanoparticles for brain microvessel endothelial cell targeting.

J Mater Chem B. 2017-10-7

[4]
Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions.

J Mater Chem B. 2017-11-28

[5]
Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum(iv) prodrug for liver cancer therapy.

J Mater Chem B. 2017-9-28

[6]
Biomaterials for polynucleotide delivery to anchorage-independent cells.

J Mater Chem B. 2017-9-21

[7]
Integration of polymers in the pore space of mesoporous nanocarriers for drug delivery.

J Mater Chem B. 2017-12-7

[8]
Nucleolin-targeted selenium nanocomposites with enhanced theranostic efficacy to antagonize glioblastoma.

J Mater Chem B. 2017-4-28

[9]
An injectable miRNA-activated matrix for effective bone regeneration in vivo.

J Mater Chem B. 2016-11-21

[10]
miR-155 in cancer drug resistance and as target for miRNA-based therapeutics.

Cancer Metastasis Rev. 2018-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索