Suppr超能文献

通过三元共混策略提高非卤化绿色溶剂处理聚合物太阳能电池性能的有效方法。

Efficient Approach for Improving the Performance of Nonhalogenated Green Solvent-Processed Polymer Solar Cells via Ternary-Blend Strategy.

机构信息

Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials , Pusan National University , Busan 46241 , South Korea.

Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701 , South Korea.

出版信息

ACS Appl Mater Interfaces. 2018 Apr 25;10(16):13748-13756. doi: 10.1021/acsami.7b19548. Epub 2018 Apr 10.

Abstract

The ternary-blend approach has the potential to enhance the power conversion efficiencies (PCEs) of polymer solar cells (PSCs) by providing complementary absorption and efficient charge generation. Unfortunately, most PSCs are processed with toxic halogenated solvents, which are harmful to human health and the environment. Herein, we report the addition of a nonfullerene electron acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC) to a binary blend (poly[4,8-bis(2-(4-(2-ethylhexyloxy)3-fluorophenyl)-5-thienyl)benzo[1,2- b:4,5- b']dithiophene- alt-1,3-bis(4-octylthien-2-yl)-5-(2-ethylhexyl)thieno[3,4- c]pyrrole-4,6-dione] (P1):[6,6]-phenyl-C-butyric acid methyl ester (PCBM), PCE = 8.07%) to produce an efficient nonhalogenated green solvent-processed ternary PSC system with a high PCE of 10.11%. The estimated wetting coefficient value (0.086) for the ternary blend suggests that ITIC could be located at the P1:PCBM interface, resulting in efficient charge generation and charge transport. In addition, the improved current density, sustained open-circuit voltage and PCE of the optimized ternary PSCs were highly correlated with their better external quantum efficiency response and flat-band potential value obtained from the Mott-Schottky analysis. In addition, the ternary PSCs also showed excellent ambient stability over 720 h. Therefore, our results demonstrate the combination of fullerene and nonfullerene acceptors in ternary blend as an efficient approach to improve the performance of eco-friendly solvent-processed PSCs with long-term stability.

摘要

三元共混方法通过提供互补的吸收和有效的电荷产生,有可能提高聚合物太阳能电池(PSC)的功率转换效率(PCE)。不幸的是,大多数 PSC 都是用有毒的卤代溶剂加工的,这对人类健康和环境有害。在此,我们报告了在二元混合物(聚[4,8-双(2-(4-(2-乙基己氧基)-3-氟苯基)-5-噻吩基)苯并[1,2-b:4,5-b']二噻吩- alt-1,3-双(4-辛基噻吩-2-基)-5-(2-乙基己基)噻吩[3,4-c]吡咯-4,6-二酮](P1):[6,6]-苯基-C-丁酸甲酯(PCBM)中添加非富勒烯电子受体 3,9-双(2-亚甲基-(3-(1,1-二氰基亚甲基)-茚酮))-5,5,11,11-四(4-己基苯基)-二噻吩[2,3-d:2',3'-d']-s-茚并[1,2-b:5,6-b']二噻吩(ITIC),以产生高效的无卤绿色溶剂处理三元 PSC 系统,其功率转换效率为 10.11%。三元混合物的估计润湿系数值(0.086)表明 ITIC 可能位于 P1:PCBM 界面处,从而实现有效的电荷产生和电荷传输。此外,优化的三元 PSC 的电流密度、开路电压和功率转换效率的提高与它们从 Mott-Schottky 分析获得的更好的外量子效率响应和平带电位值高度相关。此外,三元 PSC 在 720 小时以上也表现出优异的环境稳定性。因此,我们的结果表明,富勒烯和非富勒烯受体在三元混合物中的结合是一种提高具有长期稳定性的环保溶剂处理 PSC 性能的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验