Cardio-Thoracic-Vascular Department, Azienda Ospedaliero-Universitaria 'Policlinico-Vittorio Emanuele', University of Catania, Catania, Italy.
Department of Emergency Medicine, Waehringer Guertel, Vienna, Austria.
Eur J Cardiothorac Surg. 2018 Apr 1;53(4):708-713. doi: 10.1093/ejcts/ezy004.
In modern medicine, the results of a comprehensive and methodologically sound meta-analysis bring the most robust, high-quality information to support evidence-based decision-making. With recent developments in newer meta-analytic approaches, iteration of statistical paradigms and software implementations, network and patient-level meta-analyses have recently gained popularity alongside conventional pairwise study-level meta-analyses. However, pitfalls are common in this challenging and rapidly evolving field of statistics. In this regard, guidelines have been introduced to standardize, strengthen and homogenize different aspects of conducting and reporting the results of a meta-analysis. Current recommendations advise a careful selection of the individual studies to be pooled, mainly based on the methodological quality and homogeneity in study designs. Indeed, even if a reasonable degree of variability across study results (namely, heterogeneity) can be accounted for with proper statistics (i.e. random-effect models), no adjustment can be performed in meta-analyses violating the issue of clinical validity and similarity across the included studies. In this context, this statistical primer aims at providing a conceptual framework, complemented by a practical example, for conducting, interpreting and critically evaluating meta-analyses.
在现代医学中,全面且方法合理的荟萃分析结果提供了最可靠、高质量的信息,以支持基于证据的决策。随着新的荟萃分析方法、统计范式和软件实现的发展,网络和患者水平的荟萃分析最近与传统的两两研究水平荟萃分析一起受到欢迎。然而,在这个具有挑战性和快速发展的统计学领域中,常见的陷阱。在这方面,已经引入了指南来规范、加强和统一荟萃分析结果的各个方面。目前的建议建议仔细选择要汇总的个体研究,主要基于研究设计的方法学质量和同质性。事实上,即使可以通过适当的统计方法(即随机效应模型)来解释研究结果之间存在一定程度的可变性(即异质性),但对于违反临床有效性和纳入研究之间相似性问题的荟萃分析,无法进行调整。在这种情况下,本统计入门旨在提供一个概念框架,并通过实际示例进行补充,以进行、解释和批判性评估荟萃分析。