Suppr超能文献

FRAP 采集和分析中的参数重要性:一种模拟方法。

Parameter importance in FRAP acquisition and analysis: a simulation approach.

机构信息

Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research, Leipzig, Germany.

出版信息

Biophys J. 2013 May 7;104(9):2089-97. doi: 10.1016/j.bpj.2013.03.036.

Abstract

Fluorescence recovery after photobleaching (FRAP) is a widespread technique used to determine intracellular reaction and diffusion parameters. In recent years, due to technical advances and an increasing number of mathematical models for analysis, there was a resurging interest in FRAP applications. However, care has to be taken when inverting parameters from such data. We study potential influences on FRAP acquisition and analysis like initial fluorescence distribution, membrane passage, and geometrical aspects. Monte Carlo simulations are employed for the investigation of reaction-diffusion processes to additionally include cases in which no analytical description is available. To assess the importance of influencing factors we apply a sensitivity method based on elementary effects providing an estimate for the global parameter space. The combination of simulations and sensitivity measure helps us to predict ranges of parameters used in acquisition and analysis for which a reliably inversion of reaction-diffusion parameters is possible. Using this approach, we show that FRAP data are highly susceptible to misinterpretation. However, by identifying the parameters of susceptibility, our analysis provides the means for taking measures to significantly improve FRAP data interpretation and analysis.

摘要

荧光漂白后恢复(FRAP)是一种广泛应用于测定细胞内反应和扩散参数的技术。近年来,由于技术的进步和越来越多的分析数学模型,FRAP 的应用再次受到关注。然而,在从这些数据中反演参数时需要谨慎。我们研究了初始荧光分布、膜通透性和几何形状等对 FRAP 采集和分析的潜在影响。我们采用蒙特卡罗模拟来研究反应-扩散过程,以进一步包括没有分析描述的情况。为了评估影响因素的重要性,我们应用了一种基于基本效应的灵敏度方法,为全局参数空间提供了估计。模拟和灵敏度测量的结合帮助我们预测了在采集和分析中使用的参数范围,在这些范围内可以可靠地反演反应-扩散参数。通过这种方法,我们表明 FRAP 数据很容易被误解。然而,通过确定易感性参数,我们的分析为采取措施显著改善 FRAP 数据解释和分析提供了手段。

相似文献

1
Parameter importance in FRAP acquisition and analysis: a simulation approach.
Biophys J. 2013 May 7;104(9):2089-97. doi: 10.1016/j.bpj.2013.03.036.
2
Inference of protein kinetics by stochastic modeling and simulation of fluorescence recovery after photobleaching experiments.
Bioinformatics. 2015 Feb 1;31(3):355-62. doi: 10.1093/bioinformatics/btu619. Epub 2014 Sep 30.
4
Fluorescence recovery after photobleaching: the case of anomalous diffusion.
Biophys J. 2008 Jun;94(12):4646-53. doi: 10.1529/biophysj.107.119081. Epub 2008 Mar 7.
5
Expanding the scope of quantitative FRAP analysis.
J Theor Biol. 2010 Jan 21;262(2):295-305. doi: 10.1016/j.jtbi.2009.10.020. Epub 2009 Oct 15.
6
Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).
Methods Mol Biol. 2017;1563:243-267. doi: 10.1007/978-1-4939-6810-7_16.
7
A finite element model for protein transport in vivo.
Biomed Eng Online. 2007 Jun 28;6:24. doi: 10.1186/1475-925X-6-24.
9
Analysis of biomolecular dynamics by FRAP and computer simulation.
Methods Mol Biol. 2015;1251:109-33. doi: 10.1007/978-1-4939-2080-8_7.
10
Multiphoton fluorescence recovery after photobleaching in bounded systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051916. doi: 10.1103/PhysRevE.83.051916. Epub 2011 May 16.

引用本文的文献

1
What's past is prologue: FRAP keeps delivering 50 years later.
Biophys J. 2023 Sep 19;122(18):3577-3586. doi: 10.1016/j.bpj.2023.05.016. Epub 2023 May 22.
3
Characterization of Cell Boundary and Confocal Effects Improves Quantitative FRAP Analysis.
Biophys J. 2018 Mar 13;114(5):1153-1164. doi: 10.1016/j.bpj.2018.01.013.
4
Protein diffusion in plant cell plasma membranes: the cell-wall corral.
Front Plant Sci. 2013 Dec 17;4:515. doi: 10.3389/fpls.2013.00515. eCollection 2013.

本文引用的文献

1
Are assumptions about the model type necessary in reaction-diffusion modeling? A FRAP application.
Biophys J. 2011 Mar 2;100(5):1178-88. doi: 10.1016/j.bpj.2011.01.041.
3
A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching.
Biophys J. 2007 Apr 15;92(8):2694-703. doi: 10.1529/biophysj.106.096693. Epub 2007 Jan 26.
4
The DNA binding activity of p53 displays reaction-diffusion kinetics.
Biophys J. 2006 Jul 1;91(1):330-42. doi: 10.1529/biophysj.105.078303. Epub 2006 Apr 7.
5
Simulations of (an)isotropic diffusion on curved biological surfaces.
Biophys J. 2006 Feb 1;90(3):878-85. doi: 10.1529/biophysj.105.073809. Epub 2005 Nov 11.
6
Effects of organelle shape on fluorescence recovery after photobleaching.
Biophys J. 2005 Sep;89(3):1482-92. doi: 10.1529/biophysj.104.057885. Epub 2005 Jun 10.
7
Nucleocytoplasmic shuttling revealed by FRAP and FLIP technologies.
Curr Opin Biotechnol. 2005 Feb;16(1):28-34. doi: 10.1016/j.copbio.2004.11.002.
9
Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events.
Bull Math Biol. 2004 Nov;66(6):1515-45. doi: 10.1016/j.bulm.2004.02.005.
10
Challenges and artifacts in quantitative photobleaching experiments.
Traffic. 2004 Sep;5(9):662-71. doi: 10.1111/j.1600-0854.2004.00215.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验