Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research, Leipzig, Germany.
Biophys J. 2013 May 7;104(9):2089-97. doi: 10.1016/j.bpj.2013.03.036.
Fluorescence recovery after photobleaching (FRAP) is a widespread technique used to determine intracellular reaction and diffusion parameters. In recent years, due to technical advances and an increasing number of mathematical models for analysis, there was a resurging interest in FRAP applications. However, care has to be taken when inverting parameters from such data. We study potential influences on FRAP acquisition and analysis like initial fluorescence distribution, membrane passage, and geometrical aspects. Monte Carlo simulations are employed for the investigation of reaction-diffusion processes to additionally include cases in which no analytical description is available. To assess the importance of influencing factors we apply a sensitivity method based on elementary effects providing an estimate for the global parameter space. The combination of simulations and sensitivity measure helps us to predict ranges of parameters used in acquisition and analysis for which a reliably inversion of reaction-diffusion parameters is possible. Using this approach, we show that FRAP data are highly susceptible to misinterpretation. However, by identifying the parameters of susceptibility, our analysis provides the means for taking measures to significantly improve FRAP data interpretation and analysis.
荧光漂白后恢复(FRAP)是一种广泛应用于测定细胞内反应和扩散参数的技术。近年来,由于技术的进步和越来越多的分析数学模型,FRAP 的应用再次受到关注。然而,在从这些数据中反演参数时需要谨慎。我们研究了初始荧光分布、膜通透性和几何形状等对 FRAP 采集和分析的潜在影响。我们采用蒙特卡罗模拟来研究反应-扩散过程,以进一步包括没有分析描述的情况。为了评估影响因素的重要性,我们应用了一种基于基本效应的灵敏度方法,为全局参数空间提供了估计。模拟和灵敏度测量的结合帮助我们预测了在采集和分析中使用的参数范围,在这些范围内可以可靠地反演反应-扩散参数。通过这种方法,我们表明 FRAP 数据很容易被误解。然而,通过确定易感性参数,我们的分析为采取措施显著改善 FRAP 数据解释和分析提供了手段。