Abdellaoui Redhouane, Foulquié Pierre, Texier Nathalie, Faviez Carole, Burgun Anita, Schück Stéphane
Unité de Mixte de Recherche 1138 Team 22, Institut National de la Santé et de la Recherche Médicale / Université Pierre et Marie Curie, Paris, France.
Kappa Santé, Innovation (Kap Code), Paris, France.
J Med Internet Res. 2018 Mar 14;20(3):e85. doi: 10.2196/jmir.9222.
Medication nonadherence is a major impediment to the management of many health conditions. A better understanding of the factors underlying noncompliance to treatment may help health professionals to address it. Patients use peer-to-peer virtual communities and social media to share their experiences regarding their treatments and diseases. Using topic models makes it possible to model themes present in a collection of posts, thus to identify cases of noncompliance.
The aim of this study was to detect messages describing patients' noncompliant behaviors associated with a drug of interest. Thus, the objective was the clustering of posts featuring a homogeneous vocabulary related to nonadherent attitudes.
We focused on escitalopram and aripiprazole used to treat depression and psychotic conditions, respectively. We implemented a probabilistic topic model to identify the topics that occurred in a corpus of messages mentioning these drugs, posted from 2004 to 2013 on three of the most popular French forums. Data were collected using a Web crawler designed by Kappa Santé as part of the Detec't project to analyze social media for drug safety. Several topics were related to noncompliance to treatment.
Starting from a corpus of 3650 posts related to an antidepressant drug (escitalopram) and 2164 posts related to an antipsychotic drug (aripiprazole), the use of latent Dirichlet allocation allowed us to model several themes, including interruptions of treatment and changes in dosage. The topic model approach detected cases of noncompliance behaviors with a recall of 98.5% (272/276) and a precision of 32.6% (272/844).
Topic models enabled us to explore patients' discussions on community websites and to identify posts related with noncompliant behaviors. After a manual review of the messages in the noncompliance topics, we found that noncompliance to treatment was present in 6.17% (276/4469) of the posts.
药物治疗依从性不佳是许多健康状况管理中的主要障碍。更好地理解治疗不依从背后的因素可能有助于医护人员解决这一问题。患者利用点对点虚拟社区和社交媒体分享他们的治疗和疾病经历。使用主题模型可以对帖子集合中出现的主题进行建模,从而识别不依从的案例。
本研究的目的是检测描述患者与感兴趣药物相关的不依从行为的信息。因此,目标是对具有与不依从态度相关的同质词汇的帖子进行聚类。
我们分别关注用于治疗抑郁症和精神病性疾病的艾司西酞普兰和阿立哌唑。我们实施了一个概率主题模型,以识别在2004年至2013年期间在三个最受欢迎的法国论坛上发布的提及这些药物的消息语料库中出现的主题。数据是使用Kappa Santé设计的网络爬虫收集的,作为Detec't项目的一部分,用于分析社交媒体的药物安全性。有几个主题与治疗不依从有关。
从与一种抗抑郁药物(艾司西酞普兰)相关的3650篇帖子和与一种抗精神病药物(阿立哌唑)相关的2164篇帖子的语料库开始,使用潜在狄利克雷分配方法使我们能够对几个主题进行建模,包括治疗中断和剂量变化。主题模型方法检测到不依从行为案例,召回率为98.5%(272/276),精确率为32.6%(272/844)。
主题模型使我们能够探索患者在社区网站上的讨论,并识别与不依从行为相关的帖子。在对不依从主题中的消息进行人工审核后,我们发现6.17%(276/4469)的帖子中存在治疗不依从情况。