推特中的流行病学:通过社交媒体估算美国处方阿片类药物的滥用情况

Epidemiology from Tweets: Estimating Misuse of Prescription Opioids in the USA from Social Media.

作者信息

Chary Michael, Genes Nicholas, Giraud-Carrier Christophe, Hanson Carl, Nelson Lewis S, Manini Alex F

机构信息

Department of Emergency Medicine, NewYork-Presbyterian/Queens, Queens, NY, USA.

Department of Emergency Medicine, Mount Sinai Hospital, New York, NY, USA.

出版信息

J Med Toxicol. 2017 Dec;13(4):278-286. doi: 10.1007/s13181-017-0625-5. Epub 2017 Aug 22.

Abstract

BACKGROUND

The misuse of prescription opioids (MUPO) is a leading public health concern. Social media are playing an expanded role in public health research, but there are few methods for estimating established epidemiological metrics from social media. The purpose of this study was to demonstrate that the geographic variation of social media posts mentioning prescription opioid misuse strongly correlates with government estimates of MUPO in the last month.

METHODS

We wrote software to acquire publicly available tweets from Twitter from 2012 to 2014 that contained at least one keyword related to prescription opioid use (n = 3,611,528). A medical toxicologist and emergency physician curated the list of keywords. We used the semantic distance (SemD) to automatically quantify the similarity of meaning between tweets and identify tweets that mentioned MUPO. We defined the SemD between two words as the shortest distance between the two corresponding word-centroids. Each word-centroid represented all recognized meanings of a word. We validated this automatic identification with manual curation. We used Twitter metadata to estimate the location of each tweet. We compared our estimated geographic distribution with the 2013-2015 National Surveys on Drug Usage and Health (NSDUH).

RESULTS

Tweets that mentioned MUPO formed a distinct cluster far away from semantically unrelated tweets. The state-by-state correlation between Twitter and NSDUH was highly significant across all NSDUH survey years. The correlation was strongest between Twitter and NSDUH data from those aged 18-25 (r = 0.94, p < 0.01 for 2012; r = 0.94, p < 0.01 for 2013; r = 0.71, p = 0.02 for 2014). The correlation was driven by discussions of opioid use, even after controlling for geographic variation in Twitter usage.

CONCLUSIONS

Mentions of MUPO on Twitter correlate strongly with state-by-state NSDUH estimates of MUPO. We have also demonstrated that a natural language processing can be used to analyze social media to provide insights for syndromic toxicosurveillance.

摘要

背景

处方阿片类药物的滥用(MUPO)是一个主要的公共卫生问题。社交媒体在公共卫生研究中发挥着越来越大的作用,但从社交媒体估计既定流行病学指标的方法却很少。本研究的目的是证明提及处方阿片类药物滥用的社交媒体帖子的地理差异与政府对上个月MUPO的估计密切相关。

方法

我们编写了软件,从2012年至2014年从推特上获取公开可用的推文,这些推文至少包含一个与处方阿片类药物使用相关的关键词(n = 3,611,528)。一名医学毒理学家和急诊医生精心挑选了关键词列表。我们使用语义距离(SemD)自动量化推文之间的语义相似性,并识别提及MUPO的推文。我们将两个词之间的SemD定义为两个相应词质心之间的最短距离。每个词质心代表一个词的所有公认含义。我们通过人工筛选验证了这种自动识别。我们使用推特元数据估计每条推文的位置。我们将我们估计的地理分布与2013 - 2015年全国药物使用和健康调查(NSDUH)进行了比较。

结果

提及MUPO的推文形成了一个与语义不相关的推文相距甚远的独特集群。在所有NSDUH调查年份中,推特与NSDUH之间的州与州相关性都非常显著。推特与18 - 25岁人群的NSDUH数据之间的相关性最强(2012年r = 0.94,p < 0.01;2013年r = 0.94,p < 0.01;2014年r = 0.71,p = 0.02)。即使在控制了推特使用的地理差异之后,这种相关性也是由阿片类药物使用的讨论驱动的。

结论

推特上对MUPO的提及与NSDUH对MUPO的州与州估计密切相关。我们还证明了自然语言处理可用于分析社交媒体,为症状性毒物监测提供见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索