文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Circular DNA elements of chromosomal origin are common in healthy human somatic tissue.

作者信息

Møller Henrik Devitt, Mohiyuddin Marghoob, Prada-Luengo Iñigo, Sailani M Reza, Halling Jens Frey, Plomgaard Peter, Maretty Lasse, Hansen Anders Johannes, Snyder Michael P, Pilegaard Henriette, Lam Hugo Y K, Regenberg Birgitte

机构信息

Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark.

Roche Sequencing Solutions, Belmont, CA, 94002, USA.

出版信息

Nat Commun. 2018 Mar 14;9(1):1069. doi: 10.1038/s41467-018-03369-8.


DOI:10.1038/s41467-018-03369-8
PMID:29540679
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5852086/
Abstract

The human genome is generally organized into stable chromosomes, and only tumor cells are known to accumulate kilobase (kb)-sized extrachromosomal circular DNA elements (eccDNAs). However, it must be expected that kb eccDNAs exist in normal cells as a result of mutations. Here, we purify and sequence eccDNAs from muscle and blood samples from 16 healthy men, detecting ~100,000 unique eccDNA types from 16 million nuclei. Half of these structures carry genes or gene fragments and the majority are smaller than 25 kb. Transcription from eccDNAs suggests that eccDNAs reside in nuclei and recurrence of certain eccDNAs in several individuals implies DNA circularization hotspots. Gene-rich chromosomes contribute to more eccDNAs per megabase and the most transcribed protein-coding gene in muscle, TTN (titin), provides the most eccDNAs per gene. Thus, somatic genomes are rich in chromosome-derived eccDNAs that may influence phenotypes through altered gene copy numbers and transcription of full-length or truncated genes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/7647640915b4/41467_2018_3369_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/5180b9b06f97/41467_2018_3369_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/b5d9172e2da0/41467_2018_3369_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/a31683508bdc/41467_2018_3369_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/46b940f3b4ee/41467_2018_3369_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/e82bfb866703/41467_2018_3369_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/7647640915b4/41467_2018_3369_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/5180b9b06f97/41467_2018_3369_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/b5d9172e2da0/41467_2018_3369_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/a31683508bdc/41467_2018_3369_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/46b940f3b4ee/41467_2018_3369_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/e82bfb866703/41467_2018_3369_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/5852086/7647640915b4/41467_2018_3369_Fig6_HTML.jpg

相似文献

[1]
Circular DNA elements of chromosomal origin are common in healthy human somatic tissue.

Nat Commun. 2018-3-14

[2]
Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome.

Genome Biol Evol. 2020-1-1

[3]
Circle-Seq: Isolation and Sequencing of Chromosome-Derived Circular DNA Elements in Cells.

Methods Mol Biol. 2020

[4]
Extrachromosomal circular DNA is common in yeast.

Proc Natl Acad Sci U S A. 2015-6-16

[5]
Identification and characterization of extrachromosomal circular DNA in the silk gland of Bombyx mori.

Insect Sci. 2023-12

[6]
Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs.

Clin Transl Med. 2022-4

[7]
Extrachromosomal Circular DNAs: Origin, formation and emerging function in Cancer.

Int J Biol Sci. 2021

[8]
Circular DNA in the human germline and its association with recombination.

Mol Cell. 2022-1-6

[9]
A Quick Method to Synthesize Extrachromosomal Circular DNA In Vitro.

Molecules. 2023-5-22

[10]
The characteristics of extrachromosomal circular DNA in patients with end-stage renal disease.

Eur J Med Res. 2023-3-27

引用本文的文献

[1]
Visualizing Poloidal Orientation in DNA Minicircles.

ArXiv. 2025-8-20

[2]
Visualizing Poloidal Orientation in DNA Minicircles.

bioRxiv. 2025-8-20

[3]
A Study on the Diagnostic and Prognostic Value of Extrachromosomal Circular DNA in Breast Cancer.

Genes (Basel). 2025-7-6

[4]
MIR4726 drives bortezomib resistance in multiple myeloma by enhancing MIR4726-5p/NXF1/NKIRAS2 axis dependent autophagy.

Cell Commun Signal. 2025-7-18

[5]
Extrachromosomal circular DNAs in the differentiation of human bone marrow mesenchymal stem cells.

Stem Cell Res Ther. 2025-7-18

[6]
An Enhancement of Extrachromosomal Circular DNA Enrichment and Amplification to Address the Extreme Low Overlap Between Replicates.

bioRxiv. 2025-7-19

[7]
HyenaCircle: a HyenaDNA-based pretrained large language model for long eccDNA prediction.

Front Genet. 2025-6-26

[8]
Extrachromosomal circular DNA drives dynamic genome plasticity: emerging roles in disease progression and clinical potential.

Theranostics. 2025-5-25

[9]
Identification and characterization of eccDNA-driven genes in humans.

PLoS One. 2025-6-6

[10]
Characterization of Extrachromosomal Circular DNA in Primary and Cisplatin-Resistant High-Grade Serous Ovarian Cancer.

Genes (Basel). 2025-4-29

本文引用的文献

[1]
Emergence of the Extrachromosomal Circular DNA Complexes as One of the Earliest Signals of Cellular Differentiation in the Early Development of Mouse Embryo: (mouse embryo/teratocarcinoma/mica-press-adsorption/circular DNA complex/DNA rearrangement).

Dev Growth Differ. 1983

[2]
Molecular characterization of cell-free eccDNAs in human plasma.

Sci Rep. 2017-9-8

[3]
Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines.

PLoS One. 2017-9-6

[4]
Environmental change drives accelerated adaptation through stimulated copy number variation.

PLoS Biol. 2017-6-27

[5]
Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation.

Mol Cancer Res. 2017-5-26

[6]
Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants.

PLoS Genet. 2017-2-17

[7]
Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity.

Nature. 2017-3-2

[8]
A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.

Genome Res. 2017-1

[9]
Detecting circular RNAs: bioinformatic and experimental challenges.

Nat Rev Genet. 2016-10-14

[10]
Epigenetic Repeat-Induced Gene Silencing in the Chromosomal and Extrachromosomal Contexts in Human Cells.

PLoS One. 2016-8-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索