文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在鸽子的浓缩基因组和更大、重复序列更丰富的人类基因组中,染色体衍生的环状 DNA 呈近随机分布。

Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome.

机构信息

Department of Biology, University of Copenhagen, Denmark.

Department of Biology, Institute of Biochemistry, ETH Zürich, Switzerland.

出版信息

Genome Biol Evol. 2020 Jan 1;12(1):3762-3777. doi: 10.1093/gbe/evz281.


DOI:10.1093/gbe/evz281
PMID:31882998
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6993614/
Abstract

Extrachromosomal circular DNA (eccDNA) elements of chromosomal origin are known to be common in a number of eukaryotic species. However, it remains to be addressed whether genomic features such as genome size, the load of repetitive elements within a genome, and/or animal physiology affect the number of eccDNAs. Here, we investigate the distribution and numbers of eccDNAs in a condensed and less repeat-rich genome compared with the human genome, using Columba livia domestica (domestic rock pigeon) as a model organism. By sequencing eccDNA in blood and breast muscle from three pigeon breeds at various ages and with different flight behavior, we characterize 30,000 unique eccDNAs. We identify genomic regions that are likely hotspots for DNA circularization in breast muscle, including genes involved in muscle development. We find that although eccDNA counts do not correlate with the biological age in pigeons, the number of unique eccDNAs in a nonflying breed (king pigeons) is significantly higher (9-fold) than homing pigeons. Furthermore, a comparison between eccDNA from skeletal muscle in pigeons and humans reveals ∼9-10 times more unique eccDNAs per human nucleus. The fraction of eccDNA sequences, derived from repetitive elements, exist in proportions to genome content, that is, human 72.4% (expected 52.5%) and pigeon 8.7% (expected 5.5%). Overall, our results support that eccDNAs are common in pigeons, that the amount of unique eccDNA types per nucleus can differ between species as well as subspecies, and suggest that eccDNAs from repeats are found in proportions relative to the content of repetitive elements in a genome.

摘要

染色体来源的染色体外环状 DNA(eccDNA)元件在许多真核生物中很常见。然而,基因组大小、基因组内重复元件的负载以及/或动物生理学等基因组特征是否影响 eccDNA 的数量,这一点仍有待解决。在这里,我们使用 Columba livia domestica(家鸽)作为模型生物,研究了与人类基因组相比,在一个浓缩且重复较少的基因组中 eccDNA 的分布和数量。通过对来自三个不同年龄和不同飞行行为的鸽种的血液和胸肌中的 eccDNA 进行测序,我们鉴定了 30000 个独特的 eccDNA。我们确定了胸肌中 DNA 环化的可能热点的基因组区域,包括参与肌肉发育的基因。我们发现,尽管 eccDNA 数量与鸽子的生物年龄无关,但非飞行品种(王鸽)的独特 eccDNA 数量(高 9 倍)明显高于信鸽。此外,对鸽子和人类的骨骼肌 eccDNA 进行比较表明,人类每个核中独特的 eccDNA 数量大约是鸽子的 9-10 倍。来自重复元件的 eccDNA 序列的分数与基因组内容成比例存在,即人类为 72.4%(预期为 52.5%),鸽子为 8.7%(预期为 5.5%)。总体而言,我们的研究结果表明,eccDNA 在鸽子中很常见,每个核中独特的 eccDNA 类型的数量在物种间以及亚种间可能存在差异,并提示来自重复序列的 eccDNA 与基因组中重复元件的含量成比例存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/c1339be4fbab/evz281f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/1edf9c0749cc/evz281f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/84e68aa5f406/evz281f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/abb92698ce8b/evz281f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/e2b0f179cd5d/evz281f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/660e7423acec/evz281f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/c1339be4fbab/evz281f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/1edf9c0749cc/evz281f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/84e68aa5f406/evz281f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/abb92698ce8b/evz281f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/e2b0f179cd5d/evz281f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/660e7423acec/evz281f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9406/6993614/c1339be4fbab/evz281f6.jpg

相似文献

[1]
Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome.

Genome Biol Evol. 2020-1-1

[2]
Circular DNA elements of chromosomal origin are common in healthy human somatic tissue.

Nat Commun. 2018-3-14

[3]
Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs.

Clin Transl Med. 2022-4

[4]
Extrachromosomal circular DNA is common in yeast.

Proc Natl Acad Sci U S A. 2015-6-16

[5]
Characterization of extrachromosomal circular DNA in cattle using 676 whole genome sequencing datasets.

Anim Genet. 2022-12

[6]
ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data.

BMC Bioinformatics. 2022-1-14

[7]
Extrachromosomal circular DNA: A neglected nucleic acid molecule in plants.

Curr Opin Plant Biol. 2022-10

[8]
eccDNA Atlas: a comprehensive resource of eccDNA catalog.

Brief Bioinform. 2023-3-19

[9]
Circle-Seq: Isolation and Sequencing of Chromosome-Derived Circular DNA Elements in Cells.

Methods Mol Biol. 2020

[10]
Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells.

J Vis Exp. 2016-4-4

引用本文的文献

[1]
A comprehensive atlas of full-length Arabidopsis eccDNA populations identifies their genomic origins and epigenetic regulation.

PLoS Biol. 2025-7-15

[2]
Initial Screening of Extrachromosomal Circular DNA Candidates for Pork Meat Quality Traits Using Circle-Seq and RNA-Seq Analysis.

Animals (Basel). 2025-5-29

[3]
EccDNA Analysis Provides Novel Insights Into the Molecular Mechanism of Firmness of Fish Fillet.

Food Sci Nutr. 2025-5-13

[4]
Identification of eccDNA in Extracellular Vesicles Derived from Human Dermal Fibroblasts Through Nanopore Sequencing.

Int J Mol Sci. 2025-4-27

[5]
EccDNA atlas in male mice reveals features protecting genes against transcription-induced eccDNA formation.

Nat Commun. 2025-2-22

[6]
Genome-Wide Characterization of Extrachromosomal Circular DNA in the Midgut of BmCPV-Infected Silkworms and Its Potential Role in Antiviral Responses.

Int J Mol Sci. 2025-1-19

[7]
Unveiling the mysteries of extrachromosomal circular DNA: from generation to clinical relevance in human cancers and health.

Mol Cancer. 2024-12-20

[8]
The complete mitochondrial DNA of the carnivorous sponge is putatively complemented by microDNAs.

PeerJ. 2024

[9]
Identification and Characterization of Extrachromosomal Circular DNA in Slimming Grass Carp.

Biomolecules. 2024-8-23

[10]
Decoding the genomic enigma: Approaches to studying extrachromosomal circular DNA.

Heliyon. 2024-8-20

本文引用的文献

[1]
Transcription-induced formation of extrachromosomal DNA during yeast ageing.

PLoS Biol. 2019-12-3

[2]
Circular ecDNA promotes accessible chromatin and high oncogene expression.

Nature. 2019-11-20

[3]
Programmed genome rearrangements in Oxytricha produce transcriptionally active extrachromosomal circular DNA.

Nucleic Acids Res. 2019-10-10

[4]
Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters.

Nucleic Acids Res. 2019-5-21

[5]
CRISPR-C: circularization of genes and chromosome by CRISPR in human cells.

Nucleic Acids Res. 2018-12-14

[6]
Genomic Copy-Number Loss Is Rescued by Self-Limiting Production of DNA Circles.

Mol Cell. 2018-10-4

[7]
Circular DNA elements of chromosomal origin are common in healthy human somatic tissue.

Nat Commun. 2018-3-14

[8]
Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed .

Proc Natl Acad Sci U S A. 2018-3-12

[9]
Discoveries of Extrachromosomal Circles of DNA in Normal and Tumor Cells.

Trends Genet. 2018-1-9

[10]
Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

Annu Rev Anim Biosci. 2017-11-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索