Suppr超能文献

微流体液滴发生器与脉冲表面声波(SAW)的实时尺寸调制和同步

Real-time size modulation and synchronization of a microfluidic dropmaker with pulsed surface acoustic waves (SAW).

作者信息

Schmid Lothar, Franke Thomas

机构信息

Chair of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT, Glasgow, United Kingdom.

出版信息

Sci Rep. 2018 Mar 14;8(1):4541. doi: 10.1038/s41598-018-22529-w.

Abstract

We show that a microfluidic flow focusing drop maker can be synchronized to a surface acoustic waves (SAW) triggered by an external electric signal. In this way droplet rate and volume can be controlled over a wide range of values in real time. Using SAW, the drop formation rate of a regularly operating water in oil drop maker without SAW can be increased by acoustically enforcing the drop pinch-off and thereby reducing the volume. Drop makers of square cross-sections (w = h = 30 µm, with width w and height h) that produce large drops of length l = 10 w can be triggered to produce drops as short as l ~ 2w, approaching the geometical limit l = w without changing the flow rates. Unlike devices that adjust drop size by changing the flow rates the acoustic dropmaker has very short transients allowing to adjust the size of every single drop. This allows us to produce custom made emulsions with a defined size distribution as demonstrated here not only for a monodisperse emulsion but also for binary emulsions with drops of alternating size. Moreover, we show that the robustness and monodispersity of our devices is enhanced compared to purely flow driven drop makers in the absence of acoustic synchronization.

摘要

我们证明,微流控流动聚焦液滴生成器可以与由外部电信号触发的表面声波(SAW)同步。通过这种方式,可以实时在很宽的值范围内控制液滴速率和体积。利用表面声波,对于没有表面声波的正常运行的油包水乳滴生成器,通过声学强制液滴夹断从而减小体积,可以提高其液滴形成速率。对于方形横截面(宽度w =高度h = 30μm)且能产生长度l = 10w的大液滴的液滴生成器,在不改变流速的情况下,可以触发其产生短至l≈2w的液滴,接近几何极限l = w。与通过改变流速来调节液滴大小的装置不同,声学液滴生成器具有非常短的瞬态时间,能够调节每一个液滴的大小。这使我们能够生产具有确定尺寸分布的定制乳液,如此处所示,不仅适用于单分散乳液,也适用于具有交替尺寸液滴的二元乳液。此外,我们表明,与在没有声学同步的情况下纯粹由流动驱动的液滴生成器相比,我们的装置的稳健性和单分散性得到了增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef9/5852020/c80ce71efb98/41598_2018_22529_Fig1_HTML.jpg

相似文献

2
Integrated microfluidic system with simultaneous emulsion generation and concentration.
J Colloid Interface Sci. 2016 Mar 15;466:162-7. doi: 10.1016/j.jcis.2015.12.032. Epub 2015 Dec 18.
3
SAW-controlled drop size for flow focusing.
Lab Chip. 2013 May 7;13(9):1691-4. doi: 10.1039/c3lc41233d.
4
Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.
Biomacromolecules. 2017 Nov 13;18(11):3642-3651. doi: 10.1021/acs.biomac.7b01159. Epub 2017 Oct 19.
6
Ultrafast microfluidics using surface acoustic waves.
Biomicrofluidics. 2009 Jan 2;3(1):12002. doi: 10.1063/1.3056040.
7
Faster multiple emulsification with drop splitting.
Lab Chip. 2011 Jun 7;11(11):1911-5. doi: 10.1039/c0lc00706d. Epub 2011 Apr 19.
8
Demulsification of Oil-in-Water (O/W) Emulsion in Bidirectional Pulsed Electric Field.
Langmuir. 2018 Jul 31;34(30):8923-8931. doi: 10.1021/acs.langmuir.8b01581. Epub 2018 Jul 17.
9
High internal phase emulsions: catastrophic phase inversion, stability, and triggered destabilization.
Langmuir. 2012 Jan 10;28(1):339-49. doi: 10.1021/la204104m. Epub 2011 Dec 19.
10
Regulating Monodispersity by Controlling Droplet Spacing.
Langmuir. 2024 Oct 8;40(40):20938-20944. doi: 10.1021/acs.langmuir.4c02058. Epub 2024 Sep 24.

引用本文的文献

本文引用的文献

1
Emerging Droplet Microfluidics.
Chem Rev. 2017 Jun 28;117(12):7964-8040. doi: 10.1021/acs.chemrev.6b00848. Epub 2017 May 24.
2
On-demand droplet splitting using surface acoustic waves.
Lab Chip. 2016 Aug 16;16(17):3235-43. doi: 10.1039/c6lc00648e.
3
Computation of the pressure field generated by surface acoustic waves in microchannels.
Lab Chip. 2016 Jul 5;16(14):2701-9. doi: 10.1039/c6lc00390g.
4
Microfluidics: reframing biological enquiry.
Nat Rev Mol Cell Biol. 2015 Sep;16(9):554-67. doi: 10.1038/nrm4041.
5
The microfluidic jukebox.
Sci Rep. 2014 Apr 30;4:4787. doi: 10.1038/srep04787.
6
Functional polymeric microparticles engineered from controllable microfluidic emulsions.
Acc Chem Res. 2014 Feb 18;47(2):373-84. doi: 10.1021/ar4001263. Epub 2013 Nov 7.
7
Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation.
Lab Chip. 2013 Aug 21;13(16):3225-31. doi: 10.1039/c3lc50372k. Epub 2013 Jun 19.
8
SAW-controlled drop size for flow focusing.
Lab Chip. 2013 May 7;13(9):1691-4. doi: 10.1039/c3lc41233d.
9
Experimental validation of plugging during drop formation in a T-junction.
Lab Chip. 2012 Apr 21;12(8):1516-21. doi: 10.1039/c2lc21263c. Epub 2012 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验