Mohanty Sumit, Khalil Islam S M, Misra Sarthak
Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB Enschede, The Netherlands.
Surgical Robotics Laboratory, Department of Biomedical Engineering, University Medical Center Groningen, 9713 AV Groningen, The Netherlands.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200621. doi: 10.1098/rspa.2020.0621. Epub 2020 Nov 18.
Acoustic actuation techniques offer a promising tool for contactless manipulation of both synthetic and biological micro/nano agents that encompass different length scales. The traditional usage of sound waves has steadily progressed from mid-air manipulation of salt grains to sophisticated techniques that employ nanoparticle flow in microfluidic networks. State-of-the-art in microfabrication and instrumentation have further expanded the outreach of these actuation techniques to autonomous propulsion of micro-agents. In this review article, we provide a universal perspective of the known acoustic micromanipulation technologies in terms of their applications and governing physics. Hereby, we survey these technologies and classify them with regards to passive and active manipulation of agents. These manipulation methods account for both intelligent devices adept at dexterous non-contact handling of micro-agents, and acoustically induced mechanisms for self-propulsion of micro-robots. Moreover, owing to the clinical compliance of ultrasound, we provide future considerations of acoustic manipulation techniques to be fruitfully employed in biological applications that range from label-free drug testing to minimally invasive clinical interventions.
声学驱动技术为非接触式操控合成和生物微纳介质提供了一种很有前景的工具,这些微纳介质涵盖了不同的长度尺度。声波的传统应用已稳步发展,从在空气中操控盐粒发展到在微流体网络中利用纳米颗粒流动的复杂技术。微纳制造和仪器仪表方面的最新进展进一步扩展了这些驱动技术的应用范围,使其能够实现微介质的自主推进。在这篇综述文章中,我们从应用和控制物理方面对已知的声学微操控技术提供了一个全面的视角。在此,我们对这些技术进行了综述,并根据对介质的被动和主动操控对其进行了分类。这些操控方法既包括擅长对微介质进行灵活非接触处理的智能设备,也包括微机器人自我推进的声学诱导机制。此外,由于超声具有临床适用性,我们对声学操控技术在生物应用中的未来应用进行了思考,这些应用范围从无标记药物测试到微创临床干预。