Patel Rajesh, Gireesan K, Sengottuvel S, Janawadkar M P, Radhakrishnan T S
MEG Laboratory, SQUIDs and Applications Section, Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 India.
J Med Biol Eng. 2017;37(2):201-208. doi: 10.1007/s40846-016-0208-y. Epub 2017 Jan 4.
Electroencephalography (EEG) is a non-invasive way of recording brain activities, making it useful for diagnosing various neurological disorders. However, artifact signals associated with eye blinks or the heart spread across the scalp, contaminating EEG recordings and making EEG data analysis difficult. To solve this problem, we implement a common methodology to suppress both cardiac and ocular artifact signal, by correlating the measured contaminated EEG signals with the clean reference electro-oculography (EOG) and electrocardiography (EKG) data and subtracting the scaled EOG and EKG from the contaminated EEG recording. In the proposed methodology, the clean EOG and EKG signals are extracted by subjecting the raw reference time-series data to ensemble empirical mode decomposition to obtain the intrinsic mode functions. Then, an unsupervised technique is used to capture the artifact components. We compare the distortion introduced into the brain signal after artifact suppression using the proposed method with those obtained using conventional regression alone and with a wavelet-based approach. The results show that the proposed method outperforms the other techniques, with an additional advantage of being a common methodology for the suppression of two types of artifact.
脑电图(EEG)是一种记录大脑活动的非侵入性方法,对诊断各种神经系统疾病很有用。然而,与眨眼或心脏相关的伪迹信号会在头皮上传播,污染脑电图记录,使脑电图数据分析变得困难。为了解决这个问题,我们实施了一种通用方法来抑制心脏和眼部伪迹信号,即通过将测量到的受污染脑电图信号与干净的参考眼电图(EOG)和心电图(EKG)数据相关联,并从受污染的脑电图记录中减去缩放后的EOG和EKG。在所提出的方法中,通过对原始参考时间序列数据进行总体经验模态分解以获得本征模态函数,来提取干净的EOG和EKG信号。然后,使用无监督技术来捕获伪迹成分。我们将使用所提出的方法进行伪迹抑制后引入到大脑信号中的失真与仅使用传统回归方法和基于小波的方法所获得的失真进行比较。结果表明,所提出的方法优于其他技术,还有一个额外的优点,即它是一种抑制两种类型伪迹的通用方法。