Suppr超能文献

基于改进的多尺度样本熵、峰度和小波独立成分分析的脑电图数据无监督眼电伪迹去噪

Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA.

作者信息

Mahajan Ruhi, Morshed Bashir I

出版信息

IEEE J Biomed Health Inform. 2015 Jan;19(1):158-65. doi: 10.1109/JBHI.2014.2333010. Epub 2014 Jun 25.

Abstract

Brain activities commonly recorded using the electroencephalogram (EEG) are contaminated with ocular artifacts. These activities can be suppressed using a robust independent component analysis (ICA) tool, but its efficiency relies on manual intervention to accurately identify the independent artifactual components. In this paper, we present a new unsupervised, robust, and computationally fast statistical algorithm that uses modified multiscale sample entropy (mMSE) and Kurtosis to automatically identify the independent eye blink artifactual components, and subsequently denoise these components using biorthogonal wavelet decomposition. A 95% two-sided confidence interval of the mean is used to determine the threshold for Kurtosis and mMSE to identify the blink related components in the ICA decomposed data. The algorithm preserves the persistent neural activity in the independent components and removes only the artifactual activity. Results have shown improved performance in the reconstructed EEG signals using the proposed unsupervised algorithm in terms of mutual information, correlation coefficient, and spectral coherence in comparison with conventional zeroing-ICA and wavelet enhanced ICA artifact removal techniques. The algorithm achieves an average sensitivity of 90% and an average specificity of 98%, with average execution time for the datasets ( N = 7) of 0.06 s ( SD = 0.021) compared to the conventional wICA requiring 0.1078 s ( SD = 0.004). The proposed algorithm neither requires manual identification for artifactual components nor additional electrooculographic channel. The algorithm was tested for 12 channels, but might be useful for dense EEG systems.

摘要

通常使用脑电图(EEG)记录的大脑活动会受到眼电伪迹的干扰。这些活动可以使用强大的独立成分分析(ICA)工具来抑制,但其效率依赖于人工干预以准确识别独立的伪迹成分。在本文中,我们提出了一种新的无监督、强大且计算快速的统计算法,该算法使用改进的多尺度样本熵(mMSE)和峰度来自动识别独立的眨眼伪迹成分,随后使用双正交小波分解对这些成分进行去噪。均值的95%双侧置信区间用于确定峰度和mMSE的阈值,以在ICA分解数据中识别与眨眼相关的成分。该算法保留了独立成分中的持续神经活动,仅去除伪迹活动。结果表明,与传统的归零ICA和小波增强ICA伪迹去除技术相比,使用所提出的无监督算法重建的EEG信号在互信息、相关系数和谱相干方面具有更好的性能。该算法的平均灵敏度为90%,平均特异性为98%,数据集(N = 7)的平均执行时间为0.06秒(标准差 = 0.021),而传统的wICA需要0.1078秒(标准差 = 0.004)。所提出的算法既不需要人工识别伪迹成分,也不需要额外的眼电图通道。该算法在12个通道上进行了测试,但可能对密集EEG系统有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验