Suppr超能文献

从脑电图中去除眼部伪迹:使用模拟数据对时域回归方法和自适应滤波方法的比较

Removal of ocular artifacts from the EEG: a comparison between time-domain regression method and adaptive filtering method using simulated data.

作者信息

He Ping, Wilson Glenn, Russell Christopher, Gerschutz Maria

机构信息

Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH, USA.

出版信息

Med Biol Eng Comput. 2007 May;45(5):495-503. doi: 10.1007/s11517-007-0179-9. Epub 2007 Mar 16.

Abstract

We recently proposed an adaptive filtering (AF) method for removing ocular artifacts from EEG recordings. The method employs two parameters: the forgetting factor lambda and the filter length M. In this paper, we first show that when lambda = M = 1, the adaptive filtering method becomes equivalent to the widely used time-domain regression method. The role of lambda (when less than one) is to deal with the possible non-stationary relationship between the reference EOG and the EOG component in the EEG. To demonstrate the role of M, a simulation study is carried out that quantitatively evaluates the accuracy of the adaptive filtering method under different conditions and comparing with the accuracy of the regression method. The results show that when there is a shape difference or a misalignment between the reference EOG and the EOG artifact in the EEG, the adaptive filtering method can be more accurate in recovering the true EEG by using an M larger than one (e.g. M = 2 or 3).

摘要

我们最近提出了一种用于从脑电图记录中去除眼部伪迹的自适应滤波(AF)方法。该方法采用两个参数:遗忘因子λ和滤波器长度M。在本文中,我们首先表明,当λ = M = 1时,自适应滤波方法等同于广泛使用的时域回归方法。λ(小于1时)的作用是处理参考眼电信号(EOG)与脑电图中EOG成分之间可能存在的非平稳关系。为了证明M的作用,我们进行了一项模拟研究,定量评估了自适应滤波方法在不同条件下的准确性,并与回归方法的准确性进行比较。结果表明,当参考EOG与脑电图中的EOG伪迹存在形状差异或未对准时,自适应滤波方法通过使用大于1的M(例如M = 2或3)在恢复真实脑电图方面可能更准确。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验