Suppr超能文献

利用智能手机进行行为语境挖掘以促进自我意识

Context Mining of Sedentary Behaviour for Promoting Self-Awareness Using a Smartphone.

机构信息

Institute of Information Systems, Innopolis University, Innopolis 420500, Russia.

Department of Computer Science, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK.

出版信息

Sensors (Basel). 2018 Mar 15;18(3):874. doi: 10.3390/s18030874.

Abstract

Sedentary behaviour is increasing due to societal changes and is related to prolonged periods of sitting. There is sufficient evidence proving that sedentary behaviour has a negative impact on people's health and wellness. This paper presents our research findings on how to mine the temporal contexts of sedentary behaviour by utilizing the on-board sensors of a smartphone. We use the accelerometer sensor of the smartphone to recognize user situations (i.e., still or active). If our model confirms that the user context is still, then there is a high probability of being sedentary. Then, we process the environmental sound to recognize the micro-context, such as working on a computer or watching television during leisure time. Our goal is to reduce sedentary behaviour by suggesting preventive interventions to take short breaks during prolonged sitting to be more active. We achieve this goal by providing the visualization to the user, who wants to monitor his/her sedentary behaviour to reduce unhealthy routines for self-management purposes. The main contribution of this paper is two-fold: (i) an initial implementation of the proposed framework supporting real-time context identification; (ii) testing and evaluation of the framework, which suggest that our application is capable of substantially reducing sedentary behaviour and assisting users to be active.

摘要

由于社会变革,人们久坐的行为日益增多。有充分的证据表明,久坐行为对人们的健康和幸福有负面影响。本文介绍了我们的研究成果,即如何利用智能手机的板载传感器挖掘久坐行为的时间背景。我们使用智能手机的加速度计传感器来识别用户的情况(即静止或活动)。如果我们的模型确认用户的状态是静止的,那么很有可能处于久坐状态。然后,我们处理环境声音以识别微环境,例如在工作时或闲暇时看电视。我们的目标是通过建议在长时间久坐时进行短暂休息来采取预防措施,从而减少久坐行为,使人们更加活跃。我们通过向希望监测自己久坐行为以减少不健康习惯的用户提供可视化信息来实现这一目标,以便进行自我管理。本文的主要贡献有两点:(i)提出了一个支持实时上下文识别的初始框架实现;(ii)对框架进行了测试和评估,结果表明我们的应用程序能够显著减少久坐行为,并帮助用户保持活跃。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69ba/5877307/cbf01459cd75/sensors-18-00874-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验